ﻻ يوجد ملخص باللغة العربية
The Raychaudhuri equations for the expansion, shear and vorticity are generalized in a spacetime with torsion for timelike as well as null congruences. These equations are purely geometrical like the original Raychuadhuri equations and could be reduced to them when there is no torsion. Using the Einstein-Cartan-Sciama-Kibble field equations the effective stress-energy tensor is derived. We also consider an Oppenheimer-Snyder model for the gravitational collapse of dust. It is shown that the null energy condition (NEC) is violated before the density of the collapsing dust reaches the Planck density, hinting that the spacetime singularity may be avoided if there is a non-zero torsion,i.e. if the collapsing dust particles possess intrinsic spin.
We generalize the Tolman-Oppenheimer-Volkoff equations for space-times endowed with a Weyssenhoff like torsion field in the Einstein-Cartan theory. The new set of structure equations clearly show how the presence of torsion affects the geometry of th
In this work a static solution of Einstein-Cartan (EC) equations in 2+1 dimensional space-time is given by considering classical spin-1/2 field as external source for torsion of the space-time. Here, the torsion tensor is obtained from metricity cond
We present results from a numerical study of spherical gravitational collapse in shift symmetric Einstein dilaton Gauss-Bonnet (EdGB) gravity. This modified gravity theory has a single coupling parameter that when zero reduces to general relativity (
Gravitational stability of torsion and inflaton field in a four-dimensional spacetime de Sitter solution in scalar-tensor cosmology where Cartan torsion propagates is investigated in detail. Inflaton and torsion evolution equations are derived by mak
The qBounce experiment offers a new way of looking at gravitation based on quantum interference. An ultracold neutron is reflected in well-defined quantum states in the gravity potential of the Earth by a mirror, which allows to apply the concept of