ترغب بنشر مسار تعليمي؟ اضغط هنا

A deep-learning--based multimodal depth-aware dynamic hand gesture recognition system

138   0   0.0 ( 0 )
 نشر من قبل Hasan Mahmud
 تاريخ النشر 2021
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Any spatio-temporal movement or reorientation of the hand, done with the intention of conveying a specific meaning, can be considered as a hand gesture. Inputs to hand gesture recognition systems can be in several forms, such as depth images, monocular RGB, or skeleton joint points. We observe that raw depth images possess low contrasts in the hand regions of interest (ROI). They do not highlight important details to learn, such as finger bending information (whether a finger is overlapping the palm, or another finger). Recently, in deep-learning--based dynamic hand gesture recognition, researchers are tying to fuse different input modalities (e.g. RGB or depth images and hand skeleton joint points) to improve the recognition accuracy. In this paper, we focus on dynamic hand gesture (DHG) recognition using depth quantized image features and hand skeleton joint points. In particular, we explore the effect of using depth-quantized features in Convolutional Neural Network (CNN) and Recurrent Neural Network (RNN) based multi-modal fusion networks. We find that our method improves existing results on the SHREC-DHG-14 dataset. Furthermore, using our method, we show that it is possible to reduce the resolution of the input images by more than four times and still obtain comparable or better accuracy to that of the resolutions used in previous methods.



قيم البحث

اقرأ أيضاً

Deep learning approaches deliver state-of-the-art performance in recognition of spatiotemporal human motion data. However, one of the main challenges in these recognition tasks is limited available training data. Insufficient training data results in over-fitting and data augmentation is one approach to address this challenge. Existing data augmentation strategies, such as transformations including scaling, shifting and interpolating, require hyperparameter optimization that can easily cost hundreds of GPU hours. In this paper, we present a novel automatic data augmentation model, the Imaginative Generative Adversarial Network (GAN) that approximates the distribution of the input data and samples new data from this distribution. It is automatic in that it requires no data inspection and little hyperparameter tuning and therefore it is a low-cost and low-effort approach to generate synthetic data. The proposed data augmentation strategy is fast to train and the synthetic data leads to higher recognition accuracy than using data augmented with a classical approach.
79 - Yi Zhang , Chong Wang , Ye Zheng 2019
The purpose of gesture recognition is to recognize meaningful movements of human bodies, and gesture recognition is an important issue in computer vision. In this paper, we present a multimodal gesture recognition method based on 3D densely convoluti onal networks (3D-DenseNets) and improved temporal convolutional networks (TCNs). The key idea of our approach is to find a compact and effective representation of spatial and temporal features, which orderly and separately divide task of gesture video analysis into two parts: spatial analysis and temporal analysis. In spatial analysis, we adopt 3D-DenseNets to learn short-term spatio-temporal features effectively. Subsequently, in temporal analysis, we use TCNs to extract temporal features and employ improved Squeeze-and-Excitation Networks (SENets) to strengthen the representational power of temporal features from each TCNs layers. The method has been evaluated on the VIVA and the NVIDIA Gesture Dynamic Hand Gesture Datasets. Our approach obtains very competitive performance on VIVA benchmarks with the classification accuracies of 91.54%, and achieve state-of-the art performance with 86.37% accuracy on NVIDIA benchmark.
We present EmotiCon, a learning-based algorithm for context-aware perceived human emotion recognition from videos and images. Motivated by Freges Context Principle from psychology, our approach combines three interpretations of context for emotion re cognition. Our first interpretation is based on using multiple modalities(e.g. faces and gaits) for emotion recognition. For the second interpretation, we gather semantic context from the input image and use a self-attention-based CNN to encode this information. Finally, we use depth maps to model the third interpretation related to socio-dynamic interactions and proximity among agents. We demonstrate the efficiency of our network through experiments on EMOTIC, a benchmark dataset. We report an Average Precision (AP) score of 35.48 across 26 classes, which is an improvement of 7-8 over prior methods. We also introduce a new dataset, GroupWalk, which is a collection of videos captured in multiple real-world settings of people walking. We report an AP of 65.83 across 4 categories on GroupWalk, which is also an improvement over prior methods.
Gesture recognition and hand motion tracking are important tasks in advanced gesture based interaction systems. In this paper, we propose to apply a sliding windows filtering approach to sample the incoming streams of data from data gloves and a deci sion tree model to recognize the gestures in real time for a manual grafting operation of a vegetable seedling propagation facility. The sequence of these recognized gestures defines the tasks that are taking place, which helps to evaluate individuals performances and to identify any bottlenecks in real time. In this work, two pairs of data gloves are utilized, which reports the location of the fingers, hands, and wrists wirelessly (i.e., via Bluetooth). To evaluate the performance of the proposed framework, a preliminary experiment was conducted in multiple lab settings of tomato grafting operations, where multiple subjects wear the data gloves while performing different tasks. Our results show an accuracy of 91% on average, in terms of gesture recognition in real time by employing our proposed framework.
Gesture recognition is a fundamental tool to enable novel interaction paradigms in a variety of application scenarios like Mixed Reality environments, touchless public kiosks, entertainment systems, and more. Recognition of hand gestures can be nowad ays performed directly from the stream of hand skeletons estimated by software provided by low-cost trackers (Ultraleap) and MR headsets (Hololens, Oculus Quest) or by video processing software modules (e.g. Google Mediapipe). Despite the recent advancements in gesture and action recognition from skeletons, it is unclear how well the current state-of-the-art techniques can perform in a real-world scenario for the recognition of a wide set of heterogeneous gestures, as many benchmarks do not test online recognition and use limited dictionaries. This motivated the proposal of the SHREC 2021: Track on Skeleton-based Hand Gesture Recognition in the Wild. For this contest, we created a novel dataset with heterogeneous gestures featuring different types and duration. These gestures have to be found inside sequences in an online recognition scenario. This paper presents the result of the contest, showing the performances of the techniques proposed by four research groups on the challenging task compared with a simple baseline method.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا