ﻻ يوجد ملخص باللغة العربية
We study the entanglement entropy in 1+1 dimensional conformal field theories in the presence of interfaces from a holographic perspective. Compared with the well-known case of boundary conformal field theories, interfaces allow for several interesting new observables. Depending on how the interface is located within the entangling region, the entanglement entropies differ and exhibit surprising new patterns and universal relations. While our analysis is performed within the framework of holography, we expect our results to hold more generally.
Scattering from conformal interfaces in two dimensions is universal in that the flux of reflected and transmitted energy does not depend on the details of the initial state. In this letter, we present the first gravitational calculation of energy ref
We extend the holographic duality between 3d pure gravity and the 2d Ising CFT proposed in [Phys. Rev. D 85 (2012) 024032] to CFTs with boundaries. Besides the usual asymptotic boundary, the dual bulk spacetime now has a real cutoff, on which live br
In this paper, we will propose a universal relation between the holographic complexity (dual to a volume in AdS) and the holographic entanglement entropy (dual to an area in AdS). We will explicitly demonstrate that our conjuncture hold for all a met
The IR dynamics of effective holographic theories capturing the interplay between charge density and the leading relevant scalar operator at strong coupling are analyzed. Such theories are parameterized by two real exponents $(gamma,delta)$ that cont
We propose a simplified protocol of quantum energy teleportation (QET) for holographic conformal field theory (CFT) in 3-dimensional anti-de Sitter space with or without black hole. As a tentative proposal, we simplify the standard QET by replacing A