ﻻ يوجد ملخص باللغة العربية
In this work, we consider the distributed optimization problem in which each node has its own convex cost function and can communicate directly only with its neighbors, as determined by a directed communication topology (directed graph or digraph). First, we reformulate the optimization problem so that Alternating Direction Method of Multipliers (ADMM) can be utilized. Then, we propose an algorithm, herein called Distributed Alternating Direction Method of Multipliers using Finite-Time Exact Ratio Consensus (D-ADMM-FTERC), to solve the multi-node convex optimization problem, in which every node performs iterative computations and exchanges information with its neighbors. At every iteration of D-ADMM-FTERC, each node solves a local convex optimization problem for the one of the primal variables and utilizes a finite-time exact consensus protocol to obtain the optimal value of the other variable, since the cost function for the second primal variable is not decomposable. Since D-ADMM-FTERC requires to know the upper bound on the number of nodes in the network, we furthermore propose a new algorithm, called Fully D-ADMM Finite-Time Distributed Termination (FD-ADMM-FTDT) algorithm, which does not need any global information. If the individual cost functions are convex and not-necessarily differentiable, the proposed algorithms converge at a rate of O(1/k), where k is the iteration counter. Additionally, if the global objective function is strongly convex and smooth, the proposed algorithms have an approximate R-linear convergence rate. The efficacy of FD-ADMM-FTDT is demonstrated via a distributed L1 regularized logistic regression optimization example. Additionally, comparisons with other state-of-the-art algorithms are provided on large-scale networks showing the superior precision and time-efficient performance of FD-ADMM-FTDT.
In this work, we consider the asynchronous distributed optimization problem in which each node has its own convex cost function and can communicate directly only with its neighbors, as determined by a directed communication topology (directed graph o
Quantization of the parameters of machine learning models, such as deep neural networks, requires solving constrained optimization problems, where the constraint set is formed by the Cartesian product of many simple discrete sets. For such optimizati
Ptychography has risen as a reference X-ray imaging technique: it achieves resolutions of one billionth of a meter, macroscopic field of view, or the capability to retrieve chemical or magnetic contrast, among other features. A ptychographyic reconst
We consider a network of agents that are cooperatively solving a global optimization problem, where the objective function is the sum of privately known local objective functions of the agents and the decision variables are coupled via linear constra
The alternating direction method of multipliers (ADMM) is one of the most widely used first-order optimisation methods in the literature owing to its simplicity, flexibility and efficiency. Over the years, numerous efforts are made to improve the per