ترغب بنشر مسار تعليمي؟ اضغط هنا

Imputation-Free Learning from Incomplete Observations

126   0   0.0 ( 0 )
 نشر من قبل Qitong Gao
 تاريخ النشر 2021
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Although recent works have developed methods that can generate estimations (or imputations) of the missing entries in a dataset to facilitate downstream analysis, most depend on assumptions that may not align with real-world applications and could suffer from poor performance in subsequent tasks. This is particularly true if the data have large missingness rates or a small population. More importantly, the imputation error could be propagated into the prediction step that follows, causing the gradients used to train the prediction models to be biased. Consequently, in this work, we introduce the importance guided stochastic gradient descent (IGSGD) method to train multilayer perceptrons (MLPs) and long short-term memories (LSTMs) to directly perform inference from inputs containing missing values without imputation. Specifically, we employ reinforcement learning (RL) to adjust the gradients used to train the models via back-propagation. This not only reduces bias but allows the model to exploit the underlying information behind missingness patterns. We test the proposed approach on real-world time-series (i.e., MIMIC-III), tabular data obtained from an eye clinic, and a standard dataset (i.e., MNIST), where our imputation-free predictions outperform the traditional two-step imputation-based predictions using state-of-the-art imputation methods.



قيم البحث

اقرأ أيضاً

198 - Xinran He , Ke Xu , David Kempe 2016
We study the problem of learning influence functions under incomplete observations of node activations. Incomplete observations are a major concern as most (online and real-world) social networks are not fully observable. We establish both proper and improper PAC learnability of influence functions under randomly missing observations. Proper PAC learnability under the Discrete-Time Linear Threshold (DLT) and Discrete-Time Independent Cascade (DIC) models is established by reducing incomplete observations to complete observations in a modified graph. Our improper PAC learnability result applies for the DLT and DIC models as well as the Continuous-Time Independent Cascade (CIC) model. It is based on a parametrization in terms of reachability features, and also gives rise to an efficient and practical heuristic. Experiments on synthetic and real-world datasets demonstrate the ability of our method to compensate even for a fairly large fraction of missing observations.
Learning from Observations (LfO) is a practical reinforcement learning scenario from which many applications can benefit through the reuse of incomplete resources. Compared to conventional imitation learning (IL), LfO is more challenging because of t he lack of expert action guidance. In both conventional IL and LfO, distribution matching is at the heart of their foundation. Traditional distribution matching approaches are sample-costly which depend on on-policy transitions for policy learning. Towards sample-efficiency, some off-policy solutions have been proposed, which, however, either lack comprehensive theoretical justifications or depend on the guidance of expert actions. In this work, we propose a sample-efficient LfO approach that enables off-policy optimization in a principled manner. To further accelerate the learning procedure, we regulate the policy update with an inverse action model, which assists distribution matching from the perspective of mode-covering. Extensive empirical results on challenging locomotion tasks indicate that our approach is comparable with state-of-the-art in terms of both sample-efficiency and asymptotic performance.
Generative adversarial networks (GANs) have shown great success in applications such as image generation and inpainting. However, they typically require large datasets, which are often not available, especially in the context of prediction tasks such as image segmentation that require labels. Therefore, methods such as the CycleGAN use more easily available unlabelled data, but do not offer a way to leverage additional labelled data for improved performance. To address this shortcoming, we show how to factorise the joint data distribution into a set of lower-dimensional distributions along with their dependencies. This allows splitting the discriminator in a GAN into multiple sub-discriminators that can be independently trained from incomplete observations. Their outputs can be combined to estimate the density ratio between the joint real and the generator distribution, which enables training generators as in the original GAN framework. We apply our method to image generation, image segmentation and audio source separation, and obtain improved performance over a standard GAN when additional incomplete training examples are available. For the Cityscapes segmentation task in particular, our method also improves accuracy by an absolute 14.9% over CycleGAN while using only 25 additional paired examples.
Training an agent to solve control tasks directly from high-dimensional images with model-free reinforcement learning (RL) has proven difficult. A promising approach is to learn a latent representation together with the control policy. However, fitti ng a high-capacity encoder using a scarce reward signal is sample inefficient and leads to poor performance. Prior work has shown that auxiliary losses, such as image reconstruction, can aid efficient representation learning. However, incorporating reconstruction loss into an off-policy learning algorithm often leads to training instability. We explore the underlying reasons and identify variational autoencoders, used by previous investigations, as the cause of the divergence. Following these findings, we propose effective techniques to improve training stability. This results in a simple approach capable of matching state-of-the-art model-free and model-based algorithms on MuJoCo control tasks. Furthermore, our approach demonstrates robustness to observational noise, surpassing existing approaches in this setting. Code, results, and videos are anonymously available at https://sites.google.com/view/sac-ae/home.
130 - Andrew Jacobsen , Alan Chan 2021
Reinforcement learning lies at the intersection of several challenges. Many applications of interest involve extremely large state spaces, requiring function approximation to enable tractable computation. In addition, the learner has only a single st ream of experience with which to evaluate a large number of possible courses of action, necessitating algorithms which can learn off-policy. However, the combination of off-policy learning with function approximation leads to divergence of temporal difference methods. Recent work into gradient-based temporal difference methods has promised a path to stability, but at the cost of expensive hyperparameter tuning. In parallel, progress in online learning has provided parameter-free methods that achieve minimax optimal guarantees up to logarithmic terms, but their application in reinforcement learning has yet to be explored. In this work, we combine these two lines of attack, deriving parameter-free, gradient-based temporal difference algorithms. Our algorithms run in linear time and achieve high-probability convergence guarantees matching those of GTD2 up to $log$ factors. Our experiments demonstrate that our methods maintain high prediction performance relative to fully-tuned baselines, with no tuning whatsoever.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا