ترغب بنشر مسار تعليمي؟ اضغط هنا

Predictions of Astrometric Jitter for Sun-like Stars. II. Dependence on Inclination, Metallicity, and Active-Region Nesting

97   0   0.0 ( 0 )
 نشر من قبل Krishnamurthy Sowmya
 تاريخ النشر 2021
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Ultra-precise astrometry from the Gaia mission is expected to lead to astrometric detections of more than 20,000 exoplanets in our Galaxy. One of the factors that could hamper such detections is the astrometric jitter caused by the magnetic activity of the planet host stars. In our previous study, we modeled astrometric jitter for the Sun observed equator-on. In this work, we generalize our model and calculate the photocenter jitter as it would be measured by the Gaia and Small-JASMINE missions for stars with solar rotation rate and effective temperature, but with various values of the inclination angle of the stellar rotation axis. In addition, we consider the effect of metallicity and of nesting of active regions (i.e. the tendency of active regions to emerge in the vicinity of each other). We find that, while the jitter of stars observed equator-on does not have any long-term trends and can be easily filtered out, the photocenters of stars observed out of their equatorial planes experience systematic shifts over the course of the activity cycle. Such trends allow the jitter to be detected with continuous measurements, in which case it can interfere with planet detectability. An increase in the metallicity is found to increase the jitter caused by stellar activity. Active-region nesting can further enhance the peak-to-peak amplitude of the photocenter jitter to a level that could be detected by Gaia.



قيم البحث

اقرأ أيضاً

The advent of Gaia, capable of measuring stellar wobbles caused by orbiting planets, raised an interest to the astrometric detection of exoplanets. Another source of such wobbles (often also called jitter) is stellar magnetic activity. A quantitative assessment of the stellar astrometric jitter is important for a more reliable astrometric detection and characterisation of exoplanets. We calculate the displacement of the solar photocentre due to the magnetic activity for an almost 16-year period (February 2, 1999 - August 1, 2014). We also investigate how the displacement depends on the spectral passband chosen for observations, including the wavelength range to be covered by the upcoming Small-JASMINE mission of JAXA. This is done by extending the SATIRE-S model for solar irradiance variability to calculating the displacement of the solar photocentre caused by the magnetic features on the surface of the Sun. We found that the peak to peak amplitude of the solar photocentre displacement would reach 0.5 mas if the Sun were located 10 pc away from the observer and observed in the Gaia G filter. This is by far too small to be detected by the Gaia mission. However, the Sun is a relatively inactive star so that one can expect significantly larger signals for younger, and, consequently, more active stars. The model developed in this study can be combined with the simulations of emergence and surface transport of magnetic flux which have recently became available to model the astrometric jitter over the broad range of magnetic activities.
Reinhold et al. (Science, 1 May 2020, p. 518) provided two possible interpretations of measurements showing that the Sun is less active than other solar-like stars. We argue that one of those interpretations anticipates the observed differences betwe en the properties of their two stellar samples. This suggests that solar-like stars become permanently less variable beyond a specific evolutionary phase.
Kepler observations revealed that hundreds of stars with near-solar fundamental parameters and rotation periods have much stronger and more regular brightness variations than the Sun. Here we identify one possible reason for the peculiar behaviour of these stars. Inspired by solar nests of activity, we assume that the degree of inhomogeneity of active-region (AR) emergence on such stars is higher than on the Sun. To test our hypothesis, we model stellar light curves by injecting ARs consisting of spots and faculae on stellar surfaces at various rates and nesting patterns, using solar AR properties and differential rotation. We show that a moderate increase of the emergence frequency from the solar value combined with the increase of the degree of nesting can explain the full range of observed amplitudes of variability of Sun-like stars with nearly the solar rotation period. Furthermore, nesting in the form of active longitudes, in which ARs tend to emerge in the vicinity of two longitudes separated by $180^circ$, leads to highly regular, almost sine-like variability patterns, rather similar to those observed in a number of solar-like stars.
We present a summary of the splinter session Sun-like stars unlike the Sun that was held on 09 June 2016 as part of the Cool Stars 19 conference (Uppsala, Sweden). We discussed the main limitations (in the theory and observations) in the derivation o f very precise stellar parameters and chemical abundances of Sun-like stars. We outlined and discussed the most important and most debated processes that can produce chemical peculiarities in solar-type stars. Finally, in an open discussion between all the participants we tried to identify new pathways and prospects towards future solutions of the currently open questions.
The X-ray and extreme-ultraviolet (EUV) emissions from the low-mass stars significantly affect the evolution of the planetary atmosphere. However, it is, observationally difficult to constrain the stellar high-energy emission because of the strong in terstellar extinction of EUV photons. In this study, we simulate the XUV (X-ray+EUV) emission from the Sun-like stars by extending the solar coronal heating model that self-consistently solves, with sufficiently high resolution, the surface-to-coronal energy transport, turbulent coronal heating, and coronal thermal response by conduction and radiation. The simulations are performed with a range of loop lengths and magnetic filling factors at the stellar surface. With the solar parameters, the model reproduces the observed solar XUV spectrum below the Lyman edge, thus validating its capability of predicting the XUV spectra of other Sun-like stars. The model also reproduces the observed nearly-linear relation between the unsigned magnetic flux and the X-ray luminosity. From the simulation runs with various loop lengths and filling factors, we also find a scaling relation, namely $log L_{rm EUV} = 9.93 + 0.67 log L_{rm X}$, where $L_{rm EUV}$ and $L_{rm X}$ are the luminosity in the EUV and X-ray range, respectively, in cgs. By assuming a power-law relation between the Rossby number and the magnetic filling factor, we reproduce the renowned relation between the Rossby number and the X-ray luminosity. We also propose an analytical description of the energy injected into the corona, which, in combination with the conventional Rosner-Tucker-Vaiana scaling law, semi-analytically explains the simulation results. This study refines the concepts of solar and stellar coronal heating and derives a theoretical relation for estimating the hidden stellar EUV luminosity from X-ray observations.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا