ﻻ يوجد ملخص باللغة العربية
Within the framework of self-force theory, we compute the gravitational-wave energy flux through second order in the mass ratio for compact binaries in quasicircular orbits. Our results are consistent with post-Newtonian calculations in the weak field and they agree remarkably well with numerical-relativity simulations of comparable-mass binaries in the strong field. We also find good agreement for binaries with a spinning secondary or a slowly spinning primary. Our results are key for accurately modelling extreme-mass-ratio inspirals and will be useful in modelling intermediate-mass-ratio systems.
Self-force theory is the leading method of modeling extreme-mass-ratio inspirals (EMRIs), key sources for the gravitational-wave detector LISA. It is well known that for an accurate EMRI model, second-order self-force effects are critical, but calcul
The non-linear gravitational wave (GW) memory effect is a distinct prediction in general relativity. While the effect has been well studied for comparable mass binaries, it has mostly been overlooked for intermediate mass ratio inspirals (IMRIs). We
A powerful technique to calculate gravitational radiation from binary systems involves a perturbative expansion: if the masses of the two bodies are very different, the small body is treated as a point particle of mass $m_p$ moving in the gravitation
We calculate the gravitational waveform for spinning, precessing compact binary inspirals through second post-Newtonian order in the amplitude. When spins are collinear with the orbital angular momentum and the orbits are quasi-circular, we further p
In the adiabatic post-Newtonian (PN) approximation, the phase evolution of gravitational waves (GWs) from inspiralling compact binaries in quasicircular orbits is computed by equating the change in binding energy with the GW flux. This energy balance