ترغب بنشر مسار تعليمي؟ اضغط هنا

Neutrinos from charm: forward production at the LHC and in the atmosphere

91   0   0.0 ( 0 )
 نشر من قبل Yu Seon Jeong
 تاريخ النشر 2021
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Theoretical predictions of the prompt atmospheric neutrino flux have large uncertainties associated with charm hadron production, by far the dominant source of prompt neutrinos in the atmosphere. The flux of cosmic rays, with its steeply falling energy spectrum, weights the forward production of charm in the evaluation of the atmospheric neutrino flux at high energies. The current LHCb experiment at CERN constrains charm production in kinematic regions relevant to the prompt atmospheric neutrino flux. The proposed Forward Physics Facility has additional capabilities to detect neutrino fluxes from forward charm production at the LHC. We discuss the implications of the current and planned experiments on the development of theoretical predictions of the high energy atmospheric neutrino flux.



قيم البحث

اقرأ أيضاً

The significant neutrino flux at high rapidity at the LHC motivates dedicated forward detectors to study the properties of neutrinos at TeV energies. We investigate magnetic dipole interactions between the active neutrinos and new sterile states at e mulsion and liquid argon experiments that could be located in a future Forward Physics Facility (FPF) downstream of the ATLAS interaction point. The up-scattering of neutrinos off electrons produces an electron recoil signature that can probe new regions of parameter space at the High Luminosity LHC (HL-LHC), particularly for liquid argon detectors due to low momentum thresholds. We also consider the decay of the sterile neutrino through the dipole operator, which leads to a photon that could be displaced from the production vertex. FPF detectors can test sterile neutrino states as heavy as 1 GeV produced through the dipole portal, highlighting the use of high energy LHC neutrinos as probes of new physics.
The complete understanding of the basic constituents of hadrons and the hadronic dynamics at high energies are two of the main challenges for the theory of strong interactions. In particular, the existence of intrinsic heavy quark components in the h adron wave function must be confirmed (or disproved). In this paper we propose a new mechanism for the production of $D$-mesons at forward rapidities based on the Color Glass Condensate (CGC) formalism and demonstrate that the resulting transverse momentum spectra are strongly dependent on the behavior of the charm distribution at large Bjorken $x$. Our results show clearly that the hypothesis of intrinsic charm can be tested in $pp$ and $p(d) A$ collisions at RHIC and LHC.
We study $D$ - meson production at forward rapidities taking into account the non - linear effects in the QCD dynamics and the intrinsic charm component of the proton wave function. The total cross section, the rapidity distributions and the Feynman - $x$ distributions are calculated for $p p$ collisions at different center of mass energies. Our results show that, at the LHC, the intrinsic charm component changes the $D$ rapidity distributions in a region which is beyond the coverage of the LHCb detectors. At higher energies the IC component dominates the $y$ and $x_F$ distributions exactly in the range where the produced $D$ mesons decay and contribute the most to the prompt atmospheric neutrino flux measured by the ICECUBE Collaboration. We compute the $x_F$ - distributions and demonstrate that they are enhanced at LHC energies by approximately one order of magnitude in the $0.2 le x_F le 0.8$ range.
We present predictions for a variety of single-inclusive observables that stem from the production of charm and bottom quark pairs at the 7 TeV LHC. They are obtained within the FONLL semi-analytical framework, and with two Monte Carlo + NLO approach es, MC@NLO and POWHEG. Results are given for final states and acceptance cuts that are as close as possible to those used by experimental collaborations and, where feasible, are compared to LHC data.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا