ﻻ يوجد ملخص باللغة العربية
Using a new time-resolved cathodoluminescence system dedicated to the UV spectral range, we present a first estimate of the radiative lifetime of free excitons in hBN at room temperature. This is carried out from a single experiment giving both the absolute luminescence intensity under continuous excitation and the decay time of free excitons in the time domain. The radiative lifetime of indirect excitons in hBN is equal to 27 ns, which is much shorter than in other indirect bandgap semiconductors. This is explained by the close proximity of the electron and the hole in the exciton complex, and also by the small energy difference between indirect and direct excitons. The unusually high luminescence efficiency of hBN for an indirect bandgap is therefore semi-quantitatively understood.
We explain the nature of the electronic band gap and optical absorption spectrum of Carbon - Boron Nitride (CBN) hybridized monolayers using density functional theory (DFT), GW and Bethe-Salpeter equation calculations. The CBN optoelectronic properti
We present a general picture of the exciton properties of layered materials in terms of the excitations of their single-layer building blocks. To this end, we derive a model excitonic hamiltonian by drawing an analogy with molecular crystals, which a
The relative orientation of successive sheets, i.e. the stacking sequence, in layered two-dimensional materials is central to the electronic, thermal, and mechanical properties of the material. Often different stacking sequences have comparable cohes
We calculate the radiative lifetime and energy bandstructure of excitons in semiconducting carbon nanotubes, within a tight-binding approach. In the limit of rapid interband thermalization, the radiative decay rate is maximized at intermediate temper
High pressure Raman experiments on Boron Nitride multi-walled nanotubes show that the intensity of the vibrational mode at ~ 1367 cm-1 vanishes at ~ 12 GPa and it does not recover under decompression. In comparison, the high pressure Raman experiment