ترغب بنشر مسار تعليمي؟ اضغط هنا

Small lobe of comet 67P: Characterization of the Wosret region with ROSETTA-OSIRIS

84   0   0.0 ( 0 )
 نشر من قبل Sonia Fornasier
 تاريخ النشر 2021
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We investigated Wosret, a region located on the small lobe of the 67P/Churyumov-Gerasimenko comet subject to strong heating during the perihelion passage. This region includes Abydos, the final landing site of the Philae lander. We analyzed high-resolution images of the Wosret region acquired between 2015 and 2016 by the OSIRIS instrument on board the Rosetta spacecraft. We observed a few morphological changes in Wosret, related to local dust coating removal with an estimated depth of $sim$ 1 m, along with the formation of a cavity measuring 30 m in length and 6.5 m in depth, for a total estimated mass loss of 1.2 $times$ 10$^6$ kg. The spectrophotometry of the region is typical of medium-red regions of comet 67P, with spectral slope values of 15-16 %/(100 nm) in pre-perihelion data acquired at phase angle 60$^o$. Wosret has a spectral phase reddening of 0.0546 $times 10^{-4}$ nm$^{-1} deg^{-1}$, which is about a factor of 2 lower than what was determined for the nucleus northern hemisphere regions, possibly indicating a reduced surface micro-roughness due to the lack of widespread dust coating. A few tiny bright spots are observed. Morphological features such as goosebumps or clods are widely present and larger in size than similar features located in the big lobe. Compared to Anhur and Khonsu, two southern hemisphere regions in the big lobe which are also exposed to high insolation during perihelion, Wosret exhibits fewer exposed volatiles and less morphological variations due to activity events. Our analysis indicates that the small lobe has different physical and mechanical properties than the big one and a lower volatile content, at least in its uppermost layers. These results support the hypothesis that comet 67P originated from the merging of two distinct bodies in the early Solar System.



قيم البحث

اقرأ أيضاً

Beginning in March 2014, the OSIRIS (Optical, Spectroscopic, and Infrared Remote Imaging System) cameras began capturing images of the nucleus and coma (gas and dust) of comet 67P/Churyumov-Gerasimenko using both the wide angle camera (WAC) and the n arrow angle camera (NAC). The many observations taken since July of 2014 have been used to study the morphology, location, and temporal variation of the comets dust jets. We analyzed the dust monitoring observations shortly after the southern vernal equinox on May 30 and 31, 2015 with the WAC at the heliocentric distance Rh = 1.53 AU, where it is possible to observe that the jet rotates with the nucleus. We found that the decline of brightness as a function of the distance of the jet is much steeper than the background coma, which is a first indication of sublimation. We adapted a model of sublimation of icy aggregates and studied the effect as a function of the physical properties of the aggregates (composition and size). The major finding of this article was that through the sublimation of the aggregates of dirty grains (radius a between 5 microm and 50 microm) we were able to completely reproduce the radial brightness profile of a jet beyond 4 km from the nucleus. To reproduce the data we needed to inject a number of aggregates between 8.5 x $10^{13}$ and 8.5 x $10^{10}$ for a = 5 microm and 50 microm respectively, or an initial mass of $H_2O$ ice around 22kg.
The Rosetta mission of the European Space Agency has been orbiting the comet 67P/Churyumov-Gerasimenko (67P) since August 2014 and is now in its escort phase. A large complement of scientific experiments designed to complete the most detailed study o f a comet ever attempted are onboard Rosetta. We present results for the photometric and spectrophotometric properties of the nucleus of 67P derived from the OSIRIS imaging system, which consists of a Wide Angle Camera (WAC) and a Narrow Angle Camera (NAC). The disk-averaged phase function of the nucleus of 67P shows a strong opposition surge with a G parameter value of -0.13$pm$0.01 in the HG system formalism and an absolute magnitude $H_v(1,1,0)$ = 15.74$pm$0.02 mag. The integrated spectrophotometry in 20 filters covering the 250-1000 nm wavelength range shows a red spectral behavior, without clear absorption bands except for a potential absorption centered at $sim$ 290 nm that is possibly due to SO$_2$ ice. The nucleus shows strong phase reddening, with disk-averaged spectral slopes increasing from 11%/(100 nm) to 16%/(100 nm) in the 1.3$^{circ}$--54$^{circ}$ phase angle range. The geometric albedo of the comet is 6.5$pm$0.2% at 649 nm, with local variations of up to $sim$ 16% in the Hapi region. From the disk-resolved images we computed the spectral slope together with local spectrophotometry and identified three distinct groups of regions (blue, moderately red, and red). The Hapi region is the brightest, the bluest in term of spectral slope, and the most active surface on the comet. Local spectrophotometry shows an enhancement of the flux in the 700-750 nm that is associated with coma emissions.
The phase function of the dust coma of comet 67P has been determined from Rosetta/OSIRIS images citep{Bertini17}. This function show a deep minimum at phase angles near 100$^circ$, and a strong backscattering enhancement. These two properties cannot be reproduced by regular models of cometary dust, most of them based on wavelength-sized and randomly-oriented aggregate particles. We show, however, that an ensamble of oriented elongated particles of a wide variety of aspect ratios, with radii $r gtrsim$10 $mu$m, and whose long axes are perpendicular to the direction of the solar radiation, are capable of reproducing the observed phase function. These particles must be absorbing, with an imaginary part of the refractive index of about 0.1 to match the expected geometric albedo, and with porosity in the 60-70% range.
The southern hemisphere of comet 67P/Churyumov-Gerasimenko (67P) became observable by the Rosetta mission in March 2015, a few months before cometary southern vernal equinox. The Anhur region in the southern part of the comets larger lobe was found t o be highly eroded, enriched in volatiles, and highly active. We analyze high-resolution images of the Anhur region pre- and post-perihelion acquired by the OSIRIS imaging system on board the Rosetta mission. The Narrow Angle Camera is particularly useful for studying the evolution in Anhur in terms of morphological changes and color variations.}{Radiance factor images processed by the OSIRIS pipeline were coregistered, reprojected onto the 3D shape model of the comet, and corrected for the illumination conditions. We find a number of morphological changes in the Anhur region that are related to formation of new scarps; removal of dust coatings; localized resurfacing in some areas, including boulders displacements; and vanishing structures, which implies localized mass loss that we estimate to be higher than 50 million kg. The strongest changes took place in and nearby the Anhur canyon-like structure, where significant dust cover was removed, an entire structure vanished, and many boulders were rearranged. All such changes are potentially associated with one of the most intense outbursts registered by Rosetta during its observations, which occurred one day before perihelion passage. Moreover, in the niche at the foot of a new observed scarp, we also see evidence of water ice exposure that persisted for at least six months. The abundance of water ice, evaluated from a linear mixing model, is relatively high (> 20%). Our results confirm that the Anhur region is volatile-rich and probably is the area on 67P with the most pristine exposures near perihelion.
The Southern hemisphere of the 67P/Churyumov-Gerasimenko comet has become visible from Rosetta only since March 2015. It was illuminated during the perihelion passage and therefore it contains the regions that experienced the strongest heating and er osion rate, thus exposing the subsurface most pristine material. In this work we investigate, thanks to the OSIRIS images, the geomorphology, the spectrophotometry and some transient events of two Southern hemisphere regions: Anhur and part of Bes. Bes is dominated by outcropping consolidated terrain covered with fine particle deposits, while Anhur appears strongly eroded with elongated canyon-like structures, scarp retreats, different kinds of deposits, and degraded sequences of strata indicating a pervasive layering. We discovered a new 140 m long and 10 m high scarp formed in the Anhur/Bes boundary during/after the perihelion passage, close to the area where exposed CO$_2$ and H$_2$O ices were previously detected. Several jets have been observed originating from these regions, including the strong perihelion outburst, an active pit, and a faint optically thick dust plume. We identify several areas with a relatively bluer slope (i.e. a lower spectral slope value) than their surroundings, indicating a surface composition enriched with some water ice. These spectrally bluer areas are observed especially in talus and gravitational accumulation deposits where freshly exposed material had fallen from nearby scarps and cliffs. The investigated regions become spectrally redder beyond 2 au outbound when the dust mantle became thicker, masking the underlying ice-rich layers.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا