ﻻ يوجد ملخص باللغة العربية
We consider theoretically the paramagnetic phases of EuTiO3 that represent configurations created by two sets of microscopic degrees of freedom (m-DOF): positional symmetry breaking due to octahedral rotations and magnetic symmetry breaking due to spin disorder. The effect of these sets of m-DOFs on the electronic structure and properties of the para phases is assessed by considering sufficiently large (super) cells with the required nominal global average symmetry, allowing, however, the local positional and magnetic symmetries to be lowered. We find that tendencies for local symmetry breaking can be monitored by following total energy lowering in mean-field like density functional theory, without recourse for strong correlation effects. While most nominally cubic ABO3 perovskites are known for their symmetry breaking due to the B-atom sublattice, the case of f-electron magnetism in EuTiO3 is associated with A- sublattice symmetry breaking and its coupling to structural distortions. We find that (i) paramagnetic cubic EuTiO3 has an intrinsic tendency for both magnetic and positional symmetry breaking, while paramagnetic tetragonal EuTiO3 has only magnetic symmetry lowering and no noticeable positional symmetry lowering with respect to low-temperature antiferromagnetic tetragonal phase. (ii) Properly modeled paramagnetic tetragonal and cubic EuTiO3 have a nonzero local magnetic moment on each Eu ion, consistent with the experimental observations of local magnetism in the para phases of EuTiO3 significantly above the Neel temperature. Interestingly, (iii) the local positional distortion modes in the short-range ordered para phases are inherited from the long-range ordered low-temperature antiferromagnetic ground state phase.
Study of the combined effects of strong electronic correlations with spin-orbit coupling (SOC) represents a central issue in quantum materials research. Predicting emergent properties represents a huge theoretical problem since the presence of SOC im
Traditional band theory of perfect crystalline solids often uses as input the structure deduced from diffraction experiments; when modeled by the minimal unit cell this often produces a spatially averaged model. The present study illustrates that thi
We consider the problem of optimally insulating a given domain $Omega$ of ${mathbb{R}}^d$; this amounts to solve a nonlinear variational problem, where the optimal thickness of the insulator is obtained as the boundary trace of the solution. We deal
Metal halide perovskites exhibit a materials physics that is distinct from traditional inorganic and organic semiconductors. While materials such as CH3NH3PbI3 are non-magnetic, the presence of heavy elements (Pb and I) in a non-centrosymmetric cryst
We have elucidated the spin, lattice, charge and orbital coupling mechanism underlying the multiferroic character in tensile strained EuTiO3 films. Symmetry determined by oxygen octahedral tilting shapes the hybridization between the Eu 4f and Ti 3d