ترغب بنشر مسار تعليمي؟ اضغط هنا

Confronting SO(10) GUTs with proton decay and gravitational waves

133   0   0.0 ( 0 )
 نشر من قبل Ye-Ling Zhou
 تاريخ النشر 2021
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

Grand Unified Theories (GUT) predict proton decay as well as the formation of cosmic strings which can generate gravitational waves. We determine which non-supersymmetric $SO(10)$ breaking chains provide gauge unification in addition to a gravitational signal from cosmic string decay. We calculate the GUT and intermediate scales for these $SO(10)$ breaking chains by solving the renormalisation group equations at the two-loop level. This analysis predicts the GUT scale, hence the proton lifetime, in addition to the scale of cosmic string generation and thus the associated gravitational wave signal. We determine which $SO(10)$ breaking chains survive in the event of the null results of the next generation of gravitational waves and proton decay searches and determine the correlations between proton decay and gravitational waves scales if these observables are measured.



قيم البحث

اقرأ أيضاً

Proton decay is a smoking gun signature of Grand Unified Theories (GUTs). Searches by Super-Kamiokande have resulted in stringent limits on the GUT symmetry breaking scale. The large-scale multipurpose neutrino experiments DUNE, Hyper-Kamiokande and JUNO will either discover proton decay or further push the symmetry breaking scale above $10^{16}$ GeV. Another possible observational consequence of GUTs is the formation of a cosmic string network produced during the breaking of the GUT to the Standard Model gauge group. The evolution of such a string network in the expanding Universe produces a stochastic background of gravitational waves which will be tested by a number of gravitational wave detectors over a wide frequency range. We demonstrate the non-trivial complementarity between the observation of proton decay and gravitational waves produced from cosmic strings in determining $SO(10)$ GUT breaking chains. We show that such observations could exclude $SO(10)$ breaking via flipped $SU(5)times U(1)$ or standard $SU(5)$, while breaking via a Pati-Salam intermediate symmetry, or standard $SU(5)times U(1)$, may be favoured if a large separation of energy scales associated with proton decay and cosmic strings is indicated. We note that recent results by the NANOGrav experiment have been interpreted as evidence for cosmic strings at a scale $sim 10^{14}$ GeV. This would strongly point towards the existence of GUTs, with $SO(10)$ being the prime candidate. We show that the combination with already available constraints from proton decay allows to identify preferred symmetry breaking routes to the Standard Model.
The extended supersymmetric SO(10) model with missing partner mechanism is studied. An intermediate vacuum expectation value is incorporated which corresponds to the see-saw scale. Gauge coupling unification is not broken explicitly. Proton decay is found to satisfy the present experimental limits at the cost of fine-tuning some parameters.
We propose a mechanism to suppress proton decay induced by dimension-5 operators in a supersymmetric SO(10) model. Proton lifetime is directly connected with the intermediate vacuum expectation value which is responsible for the seesaw mechanism. The model shows many consistencies with the present theoretical results such as the components of the two Higgs doublets in the minimal supersymmetric standard model.
Proton decay is one of the most important predictions of the grand unified theory (GUT). In the supersymmetric (SUSY) GUT, proton decays via the dimension-five operators need to be suppressed. In the $SO(10)$ model where ${bf 10}+overline{bf 126}$ Hi ggs fields couple to fermions, neutrino oscillation parameters including the CP-violating Pontecorvo-Maki-Nakagawa-Sakata (PMNS) phase can be related to the Yukawa couplings to generate the dimension-five operators in the unified framework. We show how the suppressed proton decay depends on the PMNS phase, and stress the importance of the precise measurements of the PMNS phase as well as the neutrino 23-mixing angle. These become especially important if the SUSY particles are found around less than a few TeV at LHC and proton decays are observed at Hyper-Kamiokande and DUNE experiments in the near future.
We study the proton lifetime in the $SO(10)$ Grand Unified Theory (GUT), which has the left-right (LR) symmetric gauge theory below the GUT scale. In particular, we focus on the minimal model without the bi-doublet Higgs field in the LR symmetric mod el, which predicts the LR-breaking scale at around $10^{10text{--}12}$ GeV. The Wilson coefficients of the proton decay operators turn out to be considerably larger than those in the minimal $SU(5)$ GUT model especially when the Standard Model Yukawa interactions are generated by integrating out extra vector-like multiplets. As a result, we find that the proton lifetime can be within the reach of the Hyper-Kamiokande experiment even when the GUT gauge boson mass is in the $10^{16text{--}17}$ GeV range. We also show that the mass of the extra vector-like multiplets can be generated by the Peccei-Quinn symmetry breaking in a consistent way with the axion dark matter scenario.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا