ﻻ يوجد ملخص باللغة العربية
Fog computing has been advocated as an enabling technology for computationally intensive services in smart connected vehicles. Most existing works focus on analyzing the queueing and workload processing latencies associated with fog computing, ignoring the fact that wireless access latency can sometimes dominate the overall latency. This motivates the work in this paper, where we report on a five-month measurement study of the wireless access latency between connected vehicles and a fog/cloud computing system supported by commercially available LTE networks. We propose AdaptiveFog, a novel framework for autonomous and dynamic switching between different LTE networks that implement a fog/cloud infrastructure. AdaptiveFogs main objective is to maximize the service confidence level, defined as the probability that the latency of a given service type is below some threshold. To quantify the performance gap between different LTE networks, we introduce a novel statistical distance metric, called weighted Kantorovich-Rubinstein (K-R) distance. Two scenarios based on finite- and infinite-horizon optimization of short-term and long-term confidence are investigated. For each scenario, a simple threshold policy based on weighted K-R distance is proposed and proved to maximize the latency confidence for smart vehicles. Extensive analysis and simulations are performed based on our latency measurements. Our results show that AdaptiveFog achieves around 30% to 50% improvement in the confidence levels of fog and cloud latencies, respectively.
As 5G communication technology develops, vehicular communications that require high reliability, low latency, and massive connectivity are drawing increasing interest from those in academia and industry. Due to these developing technologies, vehicula
With the incoming introduction of 5G networks and the advancement in technologies, such as Network Function Virtualization and Software Defined Networking, new and emerging networking technologies and use cases are taking shape. One such technology i
Blockchain has revolutionized how transactions are conducted by ensuring secure and auditable peer-to-peer coordination. This is due to both the development of decentralization, and the promotion of trust among peers. Blockchain and fog computing are
The operation of future intelligent transportation systems (ITSs), communications infrastructure (CI), and power grids (PGs) will be highly interdependent. In particular, autonomous connected vehicles require CI resources to operate, and, thus, commu
The concept of fog computing is centered around providing computation resources at the edge of network, thereby reducing the latency and improving the quality of service. However, it is still desirable to investigate how and where at the edge of the