Quantum computation represents a revolutionary means for solving problems in quantum chemistry. However, due to the limited coherence time and relatively low gate fidelity in the current noisy intermediate-scale quantum (NISQ) devices, realization of quantum algorithms for large chemical systems remains a major challenge. In this work, we demonstrate how the circuit depth of the unitary coupled cluster ansatz in the algorithm of variational quantum eigensolver can be significantly reduced by an energy-sorting strategy. Specifically, subsets of excitation operators are pre-screened from the unitary coupled-cluster singles and doubles (UCCSD) operator pool according to its contribution to the total energy. The procedure is then iteratively repeated until the convergence of the final energy to within the chemical accuracy. For demonstration, this method has been sucessfully applied to systems of molecules and periodic hydrogen chain. Particularly, a reduction up to 14 times in the number of operators is observed while retaining the accuracy of the origin UCCSD operator pools. This method can be widely extended to other variational ansatz other than UCC.