ﻻ يوجد ملخص باللغة العربية
The electric dipole spin resonance (EDSR) combining strong spin-orbit coupling (SOC) and electric-dipole transitions facilitates fast spin control in a scalable way, which is the critical aspect of the rapid progress made recently in germanium (Ge) hole-spin qubits. However, a puzzle is raised because centrosymmetric Ge lacks the Dresselhaus SOC, a key element in the initial proposal of the hole-based EDSR. Here, we demonstrate that the recently uncovered finite k-linear Rashba SOC of 2D holes offers fast hole spin control via EDSR with Rabi frequencies in excellent agreement with experimental results over a wide range of driving fields. We also suggest that the Rabi frequency can reach 500 MHz under a higher gate electric field or multiple GHz in a replacement by [110]oriented wells. These findings bring a deeper understanding for hole-spin qubit manipulation and offer design principles to boost the gate speed.
In 1984, Bychkov and Rashba introduced a simple form of spin-orbit coupling to explain certain peculiarities in the electron spin resonance of two-dimensional semiconductors. Over the past thirty years, similar ideas have been leading to a vast numbe
We theoretically investigate the properties of holes in a Si$_{x}$Ge$_{1-x}$/Ge/ Si$_{x}$Ge$_{1-x}$ quantum well in a perpendicular magnetic field that make them advantageous as qubits, including a large ($>$100~meV) intrinsic splitting between the l
Within an effective Dirac theory the low-energy dispersions of monolayer graphene in the presence of Rashba spin-orbit coupling and spin-degenerate bilayer graphene are described by formally identical expressions. We explore implications of this corr
Spin qubits composed of either one or three electrons are realized in a quantum dot formed at a Si/SiO_2-interface in isotopically enriched silicon. Using pulsed electron spin resonance, we perform coherent control of both types of qubits, addressing
Holes confined in semiconductor nanostructures realize qubits where the quantum mechanical spin is strongly mixed with the quantum orbital angular momentum. The remarkable spin-orbit coupling allows for fast all electrical manipulation of such qubits