ترغب بنشر مسار تعليمي؟ اضغط هنا

Cell types and ontologies of the Human Cell Atlas

113   0   0.0 ( 0 )
 نشر من قبل Chuan Xu
 تاريخ النشر 2021
  مجال البحث علم الأحياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Massive single-cell profiling efforts have accelerated our discovery of the cellular composition of the human body, while at the same time raising the need to formalise this new knowledge. Here, we review current cell ontology efforts to harmonise and integrate different sources of annotations of cell types and states. We illustrate with examples how a unified ontology can consolidate and advance our understanding of cell types across scientific communities and biological domains.



قيم البحث

اقرأ أيضاً

We present a stochastic model which describes fronts of cells invading a wound. In the model cells can move, proliferate, and experience cell-cell adhesion. We find several qualitatively different regimes of front motion and analyze the transitions b etween them. Above a critical value of adhesion and for small proliferation large isolated clusters are formed ahead of the front. This is mapped onto the well-known ferromagnetic phase transition in the Ising model. For large adhesion, and larger proliferation the clusters become connected (at some fixed time). For adhesion below the critical value the results are similar to our previous work which neglected adhesion. The results are compared with experiments, and possible directions of future work are proposed.
The mechanisms underlying collective migration, or the coordinated movement of a population of cells, are not well understood despite its ubiquitous nature. As a means to investigate collective migration, we consider a wound healing scenario in which a population of cells fills in the empty space left from a scratch wound. Here we present a simplified mathematical model that uses reaction-diffusion equations to model collective migration during wound healing with an emphasis on cell movement and its response to both cell signaling and cell-cell adhesion. We use the model to investigate the effect of the MAPK signaling cascade on cell-cell adhesion during wound healing after EGF treatment. Our results suggest that activation of the MAPK signaling cascade stimulates collective migration through increases in the pulling strength of leader cells. We further use the model to suggest that treating a cell population with EGF converts the time to wound closure (as function of wound area) from parabolic to linear.
Complete understanding of the mechanisms regulating the proliferation and differentiation that takes place during human immune CD8+ T cell responses is still lacking. Human clinical data is usually limited to blood cell counts, yet the initiation of these responses occurs in the draining lymph nodes; antigen-specific effector and memory CD8+ T cells generated in the lymph nodes migrate to those tissues where they are required. We use approximate Bayesian computation with deterministic mathematical models of CD8+ T cell populations (naive, central memory, effector memory and effector) and yellow fever virus vaccine data to infer the dynamics of these CD8+ T cell populations in three spatial compartments: draining lymph nodes, circulation and skin. We have made use of the literature to obtain rates of division and death for human CD8+ T cell population subsets and thymic export rates. Under the decreasing potential hypothesis for differentiation during an immune response, we find that, as the number of T cell clonotypes driven to an immune response increases, there is a reduction in the number of divisions required to differentiate from a naive to an effector CD8+ T cell, supporting the division of labour hypothesis observed in murine studies. We have also considered the reverse differentiation scenario, the increasing potential hypothesis. The decreasing potential model is better supported by the yellow fever virus vaccine data.
Cell proliferation is typically incorporated into stochastic mathematical models of cell migration by assuming that cell divisions occur after an exponentially distributed waiting time. Experimental observations, however, show that this assumption is often far from the real cell cycle time distribution (CCTD). Recent studies have suggested an alternative approach to modelling cell proliferation based on a multi-stage representation of the CCTD. In order to validate and parametrise these models, it is important to connect them to experimentally measurable quantities. In this paper we investigate the connection between the CCTD and the speed of the collective invasion. We first state a result for a general CCTD, which allows the computation of the invasion speed using the Laplace transform of the CCTD. We use this to deduce the range of speeds for the general case. We then focus on the more realistic case of multi-stage models, using both a stochastic agent-based model and a set of reaction-diffusion equations for the cells average density. By studying the corresponding travelling wave solutions, we obtain an analytical expression for the speed of invasion for a general N-stage model with identical transition rates, in which case the resulting cell cycle times are Erlang distributed. We show that, for a general N-stage model, the Erlang distribution and the exponential distribution lead to the minimum and maximum invasion speed, respectively. This result allows us to determine the range of possible invasion speeds in terms of the average proliferation time for any multi-stage model.
Following antigen stimulation, the net outcomes of a T cell response are shaped by integrated signals from both positive co-stimulatory and negative regulatory molecules. Recently, the blockade of negative regulatory molecules (i.e. immune checkpoint signals) demonstrates therapeutic effects in treatment of human cancer, but only in a fraction of cancer patients. Since this therapy is aimed to enhance T cell responses to cancers, here we devised a conceptual model by integrating both positive and negative signals in addition to antigen stimulation. A digital range of adjustment of each signal is formulated in our model for prediction of a final T cell response. This model allows us to evaluate strategies in order to enhance antitumor T cell responses. Our model provides a rational combination strategy for maximizing the therapeutic effects of cancer immunotherapy.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا