ﻻ يوجد ملخص باللغة العربية
We study evolution of pulses propagating through focusing nonlinear media. Small disturbance on the smooth initial non-uniform background leads to formation of the region of strong nonlinear oscillations. We develop here an asymptotic method for finding the law of motion of the front of this region. The method is applied to the focusing nonlinear Schroedinger equation for the particular cases of Talanov and Akhmanov-Sukhorukov-Khokhlov initial distributions with zero initial phase. The approximate analytical results agree well with the exact numerical solutions for these two problems.
Evidence is presented of universal behavior in modulationally unstable media. An ensemble of nonlinear evolution equations, including three partial differential equations, an integro-differential equation, a nonlocal system and a differential-differe
Non-equilibrium dissipative systems usually exhibit multistability, leading to the presence of propagative domain between steady states. We investigate the front propagation into an unstable state in discrete media. Based on a paradigmatic model of c
We undertake a systematic exploration of recurrent patterns in a 1-dimensional Kuramoto-Sivashinsky system. For a small, but already rather turbulent system, the long-time dynamics takes place on a low-dimensional invariant manifold. A set of equilib
A periodically inhomogeneous Schrodinger equation is considered. The inhomogeneity is reflected through a non-uniform coefficient of the linear and non-linear term in the equation. Due to the periodic inhomogeneity of the linear term, the system may
The empirical velocity of a reaction-diffusion front, propagating into an unstable state, fluctuates because of the shot noises of the reactions and diffusion. Under certain conditions these fluctuations can be described as a diffusion process in the