ﻻ يوجد ملخص باللغة العربية
Recent works have applied the Proximal Policy Optimization (PPO) to the multi-agent cooperative tasks, such as Independent PPO (IPPO); and vanilla Multi-agent PPO (MAPPO) which has a centralized value function. However, previous literature shows that MAPPO may not perform as well as Independent PPO (IPPO) and the Fine-tuned QMIX on Starcraft Multi-Agent Challenge (SMAC). MAPPO-Feature-Pruned (MAPPO-FP) improves the performance of MAPPO by the carefully designed agent-specific features, which is is not friendly to algorithmic utility. By contrast, we find that MAPPO faces the problem of textit{The Policies Overfitting in Multi-agent Cooperation(POMAC)}, as they learn policies by the sampled shared advantage values. Then POMAC may lead to updating the multi-agent policies in a suboptimal direction and prevent the agents from exploring better trajectories. In this paper, to solve the POMAC problem, we propose two novel policy perturbation methods, i.e, Noisy-Value MAPPO (NV-MAPPO) and Noisy-Advantage MAPPO (NA-MAPPO), which disturb the advantage values via random Gaussian noise. The experimental results show that our methods outperform the Fine-tuned QMIX, MAPPO-FP, and achieves SOTA on SMAC without agent-specific features. We open-source the code at url{https://github.com/hijkzzz/noisy-mappo}.
Coordination is one of the essential problems in multi-agent systems. Typically multi-agent reinforcement learning (MARL) methods treat agents equally and the goal is to solve the Markov game to an arbitrary Nash equilibrium (NE) when multiple equili
With the adoption of autonomous vehicles on our roads, we will witness a mixed-autonomy environment where autonomous and human-driven vehicles must learn to co-exist by sharing the same road infrastructure. To attain socially-desirable behaviors, aut
We explore deep reinforcement learning methods for multi-agent domains. We begin by analyzing the difficulty of traditional algorithms in the multi-agent case: Q-learning is challenged by an inherent non-stationarity of the environment, while policy
As an emerging technique, mobile edge computing (MEC) introduces a new processing scheme for various distributed communication-computing systems such as industrial Internet of Things (IoT), vehicular communication, smart city, etc. In this work, we m
This paper extends off-policy reinforcement learning to the multi-agent case in which a set of networked agents communicating with their neighbors according to a time-varying graph collaboratively evaluates and improves a target policy while followin