ترغب بنشر مسار تعليمي؟ اضغط هنا

A Modern Perspective on Query Likelihood with Deep Generative Retrieval Models

59   0   0.0 ( 0 )
 نشر من قبل Oleg Lesota
 تاريخ النشر 2021
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Existing neural ranking models follow the text matching paradigm, where document-to-query relevance is estimated through predicting the matching score. Drawing from the rich literature of classical generative retrieval models, we introduce and formalize the paradigm of deep generative retrieval models defined via the cumulative probabilities of generating query terms. This paradigm offers a grounded probabilistic view on relevance estimation while still enabling the use of modern neural architectures. In contrast to the matching paradigm, the probabilistic nature of generative rankers readily offers a fine-grained measure of uncertainty. We adopt several current neural generative models in our framework and introduce a novel generative ranker (T-PGN), which combines the encoding capacity of Transformers with the Pointer Generator Network model. We conduct an extensive set of evaluation experiments on passage retrieval, leveraging the MS MARCO Passage Re-ranking and TREC Deep Learning 2019 Passage Re-ranking collections. Our results show the significantly higher performance of the T-PGN model when compared with other generative models. Lastly, we demonstrate that exploiting the uncertainty information of deep generative rankers opens new perspectives to query/collection understanding, and significantly improves the cut-off prediction task.



قيم البحث

اقرأ أيضاً

421 - Shihao Zou , Guanyu Tao , Jun Wang 2018
In this paper, we study jointly query reformulation and document relevance estimation, the two essential aspects of information retrieval (IR). Their interactions are modelled as a two-player strategic game: one player, a query formulator, taking act ions to produce the optimal query, is expected to maximize its own utility with respect to the relevance estimation of documents produced by the other player, a retrieval modeler; simultaneously, the retrieval modeler, taking actions to produce the document relevance scores, needs to optimize its likelihood from the training data with respect to the refined query produced by the query formulator. Their equilibrium or equilibria will be reached when both are the best responses to each other. We derive our equilibrium theory of IR using normal-form representations: when a standard relevance feedback algorithm is coupled with a retrieval model, they would share the same objective function and thus form a partnership game; by contrast, pseudo relevance feedback pursues a rather different objective than that of retrieval models, therefore the interaction between them would lead to a general-sum game (though implicitly collaborative). Our game-theoretical analyses not only yield useful insights into the two major aspects of IR, but also offer new practical algorithms for achieving the equilibrium state of retrieval which have been shown to bring consistent performance improvements in both text retrieval and item recommendation.
The Transformer-Kernel (TK) model has demonstrated strong reranking performance on the TREC Deep Learning benchmark---and can be considered to be an efficient (but slightly less effective) alternative to BERT-based ranking models. In this work, we ex tend the TK architecture to the full retrieval setting by incorporating the query term independence assumption. Furthermore, to reduce the memory complexity of the Transformer layers with respect to the input sequence length, we propose a new Conformer layer. We show that the Conformers GPU memory requirement scales linearly with input sequence length, making it a more viable option when ranking long documents. Finally, we demonstrate that incorporating explicit term matching signal into the model can be particularly useful in the full retrieval setting. We present preliminary results from our work in this paper.
Recent advances in dense retrieval techniques have offered the promise of being able not just to re-rank documents using contextualised language models such as BERT, but also to use such models to identify documents from the collection in the first p lace. However, when using dense retrieval approaches that use multiple embedded representations for each query, a large number of documents can be retrieved for each query, hindering the efficiency of the method. Hence, this work is the first to consider efficiency improvements in the context of a dense retrieval approach (namely ColBERT), by pruning query term embeddings that are estimated not to be useful for retrieving relevant documents. Our proposed query embeddings pruning reduces the cost of the dense retrieval operation, as well as reducing the number of documents that are retrieved and hence require to be fully scored. Experiments conducted on the MSMARCO passage ranking corpus demonstrate that, when reducing the number of query embeddings used from 32 to 3 based on the collection frequency of the corresponding tokens, query embedding pruning results in no statistically significant differences in effectiveness, while reducing the number of documents retrieved by 70%. In terms of mean response time for the end-to-end to end system, this results in a 2.65x speedup.
Dense retrieval systems conduct first-stage retrieval using embedded representations and simple similarity metrics to match a query to documents. Its effectiveness depends on encoded embeddings to capture the semantics of queries and documents, a cha llenging task due to the shortness and ambiguity of search queries. This paper proposes ANCE-PRF, a new query encoder that uses pseudo relevance feedback (PRF) to improve query representations for dense retrieval. ANCE-PRF uses a BERT encoder that consumes the query and the top retrieved documents from a dense retrieval model, ANCE, and it learns to produce better query embeddings directly from relevance labels. It also keeps the document index unchanged to reduce overhead. ANCE-PRF significantly outperforms ANCE and other recent dense retrieval systems on several datasets. Analysis shows that the PRF encoder effectively captures the relevant and complementary information from PRF documents, while ignoring the noise with its learned attention mechanism.
156 - Weizhen Qi , Yeyun Gong , Yu Yan 2020
In a sponsored search engine, generative retrieval models are recently proposed to mine relevant advertisement keywords for users input queries. Generative retrieval models generate outputs token by token on a path of the target library prefix tree ( Trie), which guarantees all of the generated outputs are legal and covered by the target library. In actual use, we found several typical problems caused by Trie-constrained searching length. In this paper, we analyze these problems and propose a looking ahead strategy for generative retrieval models named ProphetNet-Ads. ProphetNet-Ads improves the retrieval ability by directly optimizing the Trie-constrained searching space. We build a dataset from a real-word sponsored search engine and carry out experiments to analyze different generative retrieval models. Compared with Trie-based LSTM generative retrieval model proposed recently, our single model result and integrated result improve the recall by 15.58% and 18.8% respectively with beam size 5. Case studies further demonstrate how these problems are alleviated by ProphetNet-Ads clearly.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا