ﻻ يوجد ملخص باللغة العربية
Massive multiple-input multiple-output is a very important technology for future fifth-generation systems. However, massive massive multiple input multiple output systems are still limited because of pilot contamination, impacting the data rate due to the non-orthogonality of pilot sequences transmitted by users in the same cell to the neighboring cells. We propose a channel estimation with complete knowledge of large-scale fading by using an orthogonal pilot reuse sequence to eliminate PC in edge users with poor channel quality based on the estimation of large-scale fading and performance analysis of maximum ratio transmission and zero forcing precoding methods. We derived the lower bounds on the achievable downlink DR and signal-to-interference noise ratio based on assigning PRS to a user grouping that mitigated this problem when the number of antenna elements approaches infinity The simulation results showed that a high DR can be achieved due to better channel estimation and reduced performance loss
Extremely large-scale massive MIMO (XL-MIMO) is a promising technique for future 6G communications. The sharp increase of BS antennas leads to the unaffordable channel estimation overhead. Existing low-overhead channel estimation schemes are based on
Terahertz (THz) communication is considered to be a promising technology for future 6G network. To overcome the severe attenuation and relieve the high power consumption, massive MIMO with hybrid precoding has been widely considered for THz communica
Terahertz (THz) communication is widely considered as a key enabler for future 6G wireless systems. However, THz links are subject to high propagation losses and inter-symbol interference due to the frequency selectivity of the channel. Massive multi
We consider a cell-free hybrid massive multiple-input multiple-output (MIMO) system with $K$ users and $M$ access points (APs), each with $N_a$ antennas and $N_r< N_a$ radio frequency (RF) chains. When $Kll M{N_a}$, efficient uplink channel estimatio
We consider the pilot assignment problem in large-scale distributed multi-input multi-output (MIMO) networks, where a large number of remote radio head (RRH) antennas are randomly distributed in a wide area, and jointly serve a relatively smaller num