ﻻ يوجد ملخص باللغة العربية
In this work we investigate the standard deviation of the Cosmic Microwave Background (CMB) temperature gradient field as a signature for a multiply connected nature of the Universe. CMB simulations of a spatially infinite universe model within the paradigm of the standard cosmological model present non-zero two-point correlations at any angular scale. This is in contradiction with the extreme suppression of correlations at scales above $60^{circ}$ in the observed CMB maps. Universe models with spatially multiply connected topology contain typically a discrete spectrum of the Laplacian with a specific wave-length cut-off and thus lead to a suppression of the correlations at large angular scales, as observed in the CMB (in general there can be also an additional continuous spectrum). Among the simplest examples are 3-dimensional tori which possess only a discrete spectrum. To date, the universe models with non-trivial topology such as the toroidal space are the only models that possess a two-point correlation function showing a similar behaviour as the one derived from the observed Planck CMB maps. In this work it is shown that the normalized standard deviation of the CMB temperature gradient field does hierarchically detect the change in size of the cubic 3-torus. It is also shown that the variance of the temperature gradient of the Planck maps is in slight anomaly with the median value of simulations within the standard cosmological model. All flat tori are globally homogeneous, but are globally anisotropic. However, this study also presents a test showing a level of homogeneity and isotropy of all the CMB map ensembles for the different torus sizes considered that are nearly at the same weak level of anisotropy revealed by the CMB in the standard cosmological model.
The existence of concentric low variance circles in the CMB sky, generated by black-hole encounters in an aeon preceding our big bang, is a prediction of the Conformal Cyclic Cosmology. Detection of three families of such circles in WMAP data was rec
Could cosmic topology imply dark energy? We use a weak field (Newtonian) approximation of gravity and consider the gravitational effect from distant, multiple copies of a large, collapsed (virialised) object today (i.e. a massive galaxy cluster), tak
In the standard big bang model the universe starts in a radiation dominated era, where the gravitational perturbations are described by second order differential equations, which will generally have two orthogonal set of solutions. One is the so call
The Universe is modeled as consisting of pressureless baryonic matter and a bulk viscous fluid which is supposed to represent a unified description of the dark sector. In the homogeneous and isotropic background the textit{total} energy density of th
The goal of this short report is to summarise some key results based on our previous works on model independent tests of gravity at large scales in the Universe, their connection with the properties of gravitational waves, and the implications of the