ﻻ يوجد ملخص باللغة العربية
The study of the entanglement dynamics plays a fundamental role in understanding the behaviour of many-body quantum systems out of equilibrium. In the presence of a globally conserved charge, further insights are provided by the knowledge of the resolution of entanglement in the various symmetry sectors. Here, we carry on the program we initiated in Phys. Rev. B 103, L041104 (2021), for the study of the time evolution of the symmetry resolved entanglement in free fermion systems. We complete and extend our derivations also by defining and quantifying a symmetry resolved mutual information. The entanglement entropies display a time delay that depends on the charge sector that we characterise exactly. Both entanglement entropies and mutual information show effective equipartition in the scaling limit of large time and subsystem size. Furthermore, we argue that the behaviour of the charged entropies can be quantitatively understood in the framework of the quasiparticle picture for the spreading of entanglement, and hence we expect that a proper adaptation of our results should apply to a large class of integrable systems. We also find that the number entropy grows logarithmically with time before saturating to a value proportional to the logarithm of the subsystem size.
We study the moments of the partial transpose of the reduced density matrix of two intervals for the free massless Dirac fermion. By means of a direct calculation based on coherent state path integral, we find an analytic form for these moments in te
We study the time evolution of the logarithmic negativity after a global quantum quench. In a 1+1 dimensional conformal invariant field theory, we consider the negativity between two intervals which can be either adjacent or disjoint. We show that th
Quantum entanglement and its main quantitative measures, the entanglement entropy and entanglement negativity, play a central role in many body physics. An interesting twist arises when the system considered has symmetries leading to conserved quanti
In a quantum many-body system that possesses an additive conserved quantity, the entanglement entropy of a subsystem can be resolved into a sum of contributions from different sectors of the subsystems reduced density matrix, each sector correspondin
We analyze the quantum trajectory dynamics of free fermions subject to continuous monitoring. For weak monitoring, we identify a novel dynamical regime of subextensive entanglement growth, reminiscent of a critical phase with an emergent conformal in