ترغب بنشر مسار تعليمي؟ اضغط هنا

Exact quench dynamics of symmetry resolved entanglement in a free fermion chain

161   0   0.0 ( 0 )
 نشر من قبل Riccarda Bonsignori
 تاريخ النشر 2021
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The study of the entanglement dynamics plays a fundamental role in understanding the behaviour of many-body quantum systems out of equilibrium. In the presence of a globally conserved charge, further insights are provided by the knowledge of the resolution of entanglement in the various symmetry sectors. Here, we carry on the program we initiated in Phys. Rev. B 103, L041104 (2021), for the study of the time evolution of the symmetry resolved entanglement in free fermion systems. We complete and extend our derivations also by defining and quantifying a symmetry resolved mutual information. The entanglement entropies display a time delay that depends on the charge sector that we characterise exactly. Both entanglement entropies and mutual information show effective equipartition in the scaling limit of large time and subsystem size. Furthermore, we argue that the behaviour of the charged entropies can be quantitatively understood in the framework of the quasiparticle picture for the spreading of entanglement, and hence we expect that a proper adaptation of our results should apply to a large class of integrable systems. We also find that the number entropy grows logarithmically with time before saturating to a value proportional to the logarithm of the subsystem size.



قيم البحث

اقرأ أيضاً

We study the moments of the partial transpose of the reduced density matrix of two intervals for the free massless Dirac fermion. By means of a direct calculation based on coherent state path integral, we find an analytic form for these moments in te rms of the Riemann theta function. We show that the moments of arbitrary order are equal to the same quantities for the compactified boson at the self-dual point. These equalities imply the non trivial result that also the negativity of the free fermion and the self-dual boson are equal.
We study the time evolution of the logarithmic negativity after a global quantum quench. In a 1+1 dimensional conformal invariant field theory, we consider the negativity between two intervals which can be either adjacent or disjoint. We show that th e negativity follows the quasi-particle interpretation for the spreading of entanglement. We check and generalise our findings with a systematic analysis of the negativity after a quantum quench in the harmonic chain, highlighting two peculiar lattice effects: the late birth and the sudden death of entanglement.
Quantum entanglement and its main quantitative measures, the entanglement entropy and entanglement negativity, play a central role in many body physics. An interesting twist arises when the system considered has symmetries leading to conserved quanti ties: Recent studies introduced a way to define, represent in field theory, calculate for 1+1D conformal systems, and measure, the contribution of individual charge sectors to the entanglement measures between different parts of a system in its ground state. In this paper, we apply these ideas to the time evolution of the charge-resolved contributions to the entanglement entropy and negativity after a local quantum quench. We employ conformal field theory techniques and find that the known dependence of the total entanglement on time after a quench, $S_A sim log(t)$, results from $simsqrt{log(t)}$ significant charge sectors, each of which contributes $simsqrt{log(t)}$ to the entropy. We compare our calculation to numerical results obtained by the time-dependent density matrix renormalization group algorithm and exact solution in the noninteracting limit, finding good agreement between all these methods.
In a quantum many-body system that possesses an additive conserved quantity, the entanglement entropy of a subsystem can be resolved into a sum of contributions from different sectors of the subsystems reduced density matrix, each sector correspondin g to a possible value of the conserved quantity. Recent studies have discussed the basic properties of these symmetry-resolved contributions, and calculated them using conformal field theory and numerical methods. In this work we employ the generalized Fisher-Hartwig conjecture to obtain exact results for the characteristic function of the symmetry-resolved entanglement (flux-resolved entanglement) for certain 1D spin chains, or, equivalently, the 1D fermionic tight binding and the Kitaev chain models. These results are true up to corrections of order $o(L^{-1})$ where $L$ is the subsystem size. We confirm that this calculation is in good agreement with numerical results. For the gapless tight binding chain we report an intriguing periodic structure of the characteristic functions, which nicely extends the structure predicted by conformal field theory. For the Kitaev chain in the topological phase we demonstrate the degeneracy between the even and odd fermion parity sectors of the entanglement spectrum due to virtual Majoranas at the entanglement cut. We also employ the Widom conjecture to obtain the leading behavior of the symmetry-resolved entanglement entropy in higher dimensions for an ungapped free Fermi gas in its ground state.
We analyze the quantum trajectory dynamics of free fermions subject to continuous monitoring. For weak monitoring, we identify a novel dynamical regime of subextensive entanglement growth, reminiscent of a critical phase with an emergent conformal in variance. For strong monitoring, however, the dynamics favors a transition into a quantum Zeno-like area-law regime. Close to the critical point, we observe logarithmic finite size corrections, indicating a Berezinskii-Kosterlitz-Thouless mechanism underlying the transition. This uncovers an unconventional entanglement transition in an elementary, physically realistic model for weak continuous measurements. In addition, we demonstrate that the measurement aspect in the dynamics is crucial for whether or not a phase transition takes place.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا