ترغب بنشر مسار تعليمي؟ اضغط هنا

Probing Polarization and the Role of Magnetic Fields in Cloud Destruction in the Keyhole Nebula

96   0   0.0 ( 0 )
 نشر من قبل Youngmin Seo
 تاريخ النشر 2021
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We present polarimetric observations of the Keyhole Nebula in the Carina Nebula Complex carried out using the Stratospheric Observatory for Infrared Astronomy. The Keyhole Nebula located to the west of $eta$ Carinae is believed to be disturbed by the stellar winds from the star. We observed the Keyhole Nebula at 89 $mu$m wavelength with the HAWC+ instrument. The observations cover the entire Keyhole Nebula spanning 8$$ by 5$$ with central position RA = 10:44:43 and Dec = -59:38:04. The typical uncertainty of polarization measurement is less than 0.5% in the region with intensity above 5,500 MJy sr$^{-1}$. The polarization has a mean of 2.4% with a standard deviation of 1.6% in the region above this intensity, similar to values in other high--mass star--forming regions. The magnetic field orientation in the bar--shaped structure is similar to the large--scale magnetic field orientation. On the other hand, the magnetic field direction in the loop is not aligned with the large--scale magnetic fields but has tight alignment with the loop itself. Analysis of the magnetic field angles and the gas turbulence suggests that the field strength is $sim$70 $mu$G in the loop. A simple comparison of the magnetic field tension to the ram pressure of $eta$ Carinaes stellar wind suggests that the magnetic fields in the Keyhole Nebula are not strong enough to maintain the current structure against the impact of the stellar wind, and that the role of the magnetic field in resisting stellar feedback in the Keyhole Nebula is limited.



قيم البحث

اقرأ أيضاً

We review the role that magnetic field may have on the formation and evolution of molecular clouds. After a brief presentation and main assumptions leading to ideal MHD equations, their most important correction, namely the ion-neutral drift is descr ibed. The nature of the multi-phase interstellar medium (ISM) and the thermal processes that allows this gas to become denser are presented. Then we discuss our current knowledge of compressible magnetized turbulence, thought to play a fundamental role in the ISM. We also describe what is known regarding the correlation between the magnetic and the density fields. Then the influence that magnetic field may have on the interstellar filaments and the molecular clouds is discussed, notably the role it may have on the prestellar dense cores as well as regarding the formation of stellar clusters. Finally we briefly review its possible effects on the formation of molecular clouds themselves. We argue that given the magnetic intensities that have been measured, it is likely that magnetic field is i) responsible of reducing the star formation rate in dense molecular cloud gas by a factor of a few, ii) strongly shaping the interstellar gas by generating a lot of filaments and reducing the numbers of clumps, cores and stars, although its exact influence remains to be better understood. % by a factor on the order of at least 2. Moreover at small scales, magnetic braking is likely a dominant process that strongly modifies the outcome of the star formation process. Finally, we stress that by inducing the formation of more massive stars, magnetic field could possibly enhance the impact of stellar feedback.
Large-scale shocks formed by clustered feedback of young OB stars are considered an important source of mechanical energy for the ISM and a trigger of molecular cloud formation. Their interaction sites are locations where kinetic energy and magnetic fields are redistributed between ISM phases. In this work we study the effect of the magnetic field on the expansion and fragmentation of supershells and look for the signatures of supershell collisions on dense structures and on the kinetic and magnetic energy distribution of the ISM. We performed a series of high-resolution, three-dimensional simulations of colliding supershells. The shocks are created by time-dependent feedback and evolve in a diffuse turbulent environment that is either unmagnetized or has different initial magnetic field configurations. In the hydrodynamical situation, the expansion law of the superbubbles is consistent with the radius-time relation that is theoretically predicted for wind-blown bubbles. The supershells fragment over their entire surface into small dense clumps that carry more than half of the total kinetic energy in the volume. However, this is not the case when a magnetic field is introduced, either in the direction of the collision or perpendicular to the collision. In magnetized situations, the shell surfaces are more stable to dynamical instabilities. When the magnetic field opposes the collision, the expansion law of the supershells also becomes significantly flatter than in the hydrodynamical case. Although a two-phase medium arises in all cases, in the MHD simulations the cold phase is limited to lower densities.
Magnetic fields play a very important role in the evolution of galaxies through their direct impact on star formation and stellar feedback-induced turbulence. However, their co-evolution with these processes has still not been thoroughly investigated , and the possible effect of the initial conditions is largely unknown. This letter presents the first results from a series of high-resolution numerical models, aimed at deciphering the effect of the initial conditions and of stellar feedback on the evolution of the galactic magnetic field in isolated, Milky-Way-like galaxies. The models start with an ordered, either poloidal or toroidal, magnetic field of varying strength, and are evolved with and without supernova feedback. They include a dark matter halo, a stellar and a gaseous disk, as well as the appropriate cooling and heating processes for the interstellar medium. Independently of the initial conditions, the galaxies develop a turbulent velocity field and a random magnetic field component in under 15 Myrs. Supernova feedback is extremely efficient in building a random magnetic field component up to large galactic heights. However, a random magnetic field emerges even in runs without feedback, which points to an inherent instability of the ordered component. Supernova feedback greatly affects the velocity field of the galaxy up to large galactic heights, and helps restructure the magnetic field up to 10 kpc above the disk, independently of the initial magnetic field morphology. On the other hand, the initial morphology of the magnetic field can accelerate the development of a random component at large heights. These effects have important implications for the study of the magnetic field evolution in galaxy simulations.
We present the B-fields mapped in IRDC G34.43+0.24 using 850,$mu$m polarized dust emission observed with the POL-2 instrument at JCMT. We examine the magnetic field geometries and strengths in the northern, central, and southern regions of the filame nt. The overall field geometry is ordered and aligned closely perpendicular to the filaments main axis, particularly in regions containing the central clumps MM1 and MM2, whereas MM3 in the north has field orientations aligned with its major axis. The overall field orientations are uniform at large (POL-2 at 14$arcsec$ and SHARP at 10$arcsec$) to small scales (TADPOL at 2.5$arcsec$ and SMA at 1.5$arcsec$) in the MM1 and MM2 regions. SHARP/CSO observations in MM3 at 350,$mu$m from Tang et al. show a similar trend as seen in our POL-2 observations. TADPOL observations demonstrate a well-defined field geometry in MM1/MM2 consistent with MHD simulations of accreting filaments. We obtained a plane-of-sky magnetic field strength of 470$pm$190,$mu$G, 100$pm$40,$mu$G, and 60$pm$34,$mu$G in the central, northern and southern regions of G34, respectively, using the updated Davis-Chandrasekhar-Fermi relation. The estimated value of field strength, combined with column density and velocity dispersion values available in the literature, suggests G34 to be marginally critical with criticality parameter $rm lambda$ values 0.8$pm$0.4, 1.1$pm$0.8, and 0.9$pm$0.5 in the central, northern, and southern regions, respectively. The turbulent motions in G34 are sub-Alfv{e}nic with Alfv{e}nic Mach numbers of 0.34$pm$0.13, 0.53$pm$0.30, and 0.49$pm$0.26 in the three regions. The observed aligned B-fields in G34.43+0.24 are consistent with theoretical models suggesting that B-fields play an important role in guiding the contraction of the cloud driven by gravity.
The aim of this work is to investigate the average properties of the intra-cluster medium (ICM) magnetic fields, and to search for possible correlations with the ICM thermal properties and cluster radio emission. We have selected a sample of 39 massi ve galaxy clusters from the HIghest X-ray FLUx Galaxy Cluster Sample, and used Northern VLA Sky Survey data to analyze the fractional polarization of radio sources out to 10 core radii from the cluster centers. Following Murgia et al (2004), we have investigated how different magnetic field strengths affect the observed polarized emission of sources lying at different projected distances from the cluster center. In addition, statistical tests are performed to investigate the fractional polarization trends in clusters with different thermal and non-thermal properties. We find a trend of the fractional polarization with the cluster impact parameter, with fractional polarization increasing at the cluster periphery and decreasing toward the cluster center. Such trend can be reproduced by a magnetic field model with central value of few $mu$G. The logrank statistical test indicates that there are no differences in the depolarization trend observed in cluster with and without radio halo, while the same test indicates significant differences when the depolarization trend of sources in clusters with and without cool core are compared. The comparison between clusters with high and low temperatures does not yields significant differences. Although therole of the gas density should be better accounted for, these results give important indications for models that require a role of the ICM magnetic field to explain the presence of cool core and radio halos in galaxy clusters.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا