ترغب بنشر مسار تعليمي؟ اضغط هنا

Distilling effective supervision for robust medical image segmentation with noisy labels

103   0   0.0 ( 0 )
 نشر من قبل Jialin Shi
 تاريخ النشر 2021
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Despite the success of deep learning methods in medical image segmentation tasks, the human-level performance relies on massive training data with high-quality annotations, which are expensive and time-consuming to collect. The fact is that there exist low-quality annotations with label noise, which leads to suboptimal performance of learned models. Two prominent directions for segmentation learning with noisy labels include pixel-wise noise robust training and image-level noise robust training. In this work, we propose a novel framework to address segmenting with noisy labels by distilling effective supervision information from both pixel and image levels. In particular, we explicitly estimate the uncertainty of every pixel as pixel-wise noise estimation, and propose pixel-wise robust learning by using both the original labels and pseudo labels. Furthermore, we present an image-level robust learning method to accommodate more information as the complements to pixel-level learning. We conduct extensive experiments on both simulated and real-world noisy datasets. The results demonstrate the advantageous performance of our method compared to state-of-the-art baselines for medical image segmentation with noisy labels.



قيم البحث

اقرأ أيضاً

Learning segmentation from noisy labels is an important task for medical image analysis due to the difficulty in acquiring highquality annotations. Most existing methods neglect the pixel correlation and structural prior in segmentation, often produc ing noisy predictions around object boundaries. To address this, we adopt a superpixel representation and develop a robust iterative learning strategy that combines noise-aware training of segmentation network and noisy label refinement, both guided by the superpixels. This design enables us to exploit the structural constraints in segmentation labels and effectively mitigate the impact of label noise in learning. Experiments on two benchmarks show that our method outperforms recent state-of-the-art approaches, and achieves superior robustness in a wide range of label noises. Code is available at https://github.com/gaozhitong/SP_guided_Noisy_Label_Seg.
Point cloud segmentation is a fundamental task in 3D. Despite recent progress on point cloud segmentation with the power of deep networks, current deep learning methods based on the clean label assumptions may fail with noisy labels. Yet, object clas s labels are often mislabeled in real-world point cloud datasets. In this work, we take the lead in solving this issue by proposing a novel Point Noise-Adaptive Learning (PNAL) framework. Compared to existing noise-robust methods on image tasks, our PNAL is noise-rate blind, to cope with the spatially variant noise rate problem specific to point clouds. Specifically, we propose a novel point-wise confidence selection to obtain reliable labels based on the historical predictions of each point. A novel cluster-wise label correction is proposed with a voting strategy to generate the best possible label taking the neighbor point correlations into consideration. We conduct extensive experiments to demonstrate the effectiveness of PNAL on both synthetic and real-world noisy datasets. In particular, even with $60%$ symmetric noisy labels, our proposed method produces much better results than its baseline counterpart without PNAL and is comparable to the ideal upper bound trained on a completely clean dataset. Moreover, we fully re-labeled the validation set of a popular but noisy real-world scene dataset ScanNetV2 to make it clean, for rigorous experiment and future research. Our code and data are available at url{https://shuquanye.com/PNAL_website/}.
The data-driven nature of deep learning models for semantic segmentation requires a large number of pixel-level annotations. However, large-scale and fully labeled medical datasets are often unavailable for practical tasks. Recently, partially superv ised methods have been proposed to utilize images with incomplete labels to mitigate the data scarcity problem in the medical domain. As an emerging research area, the breakthroughs made by existing methods rely on either large-scale data or complex model design, which makes them 1) less practical for certain real-life tasks and 2) less robust for small-scale data. It is time to step back and think about the robustness of partially supervised methods and how to maximally utilize small-scale and partially labeled data for medical image segmentation tasks. To bridge the methodological gaps in label-efficient deep learning with partial supervision, we propose RAMP, a simple yet efficient data augmentation framework for partially supervised medical image segmentation by exploiting the assumption that patients share anatomical similarities. We systematically evaluate RAMP and the previous methods in various controlled multi-structure segmentation tasks. Compared to the mainstream approaches, RAMP consistently improves the performance of traditional segmentation networks on small-scale partially labeled data and utilize additional image-wise weak annotations.
126 - Li Xiao , Yinhao Li , Luxi Qv 2021
Segmentation of pathological images is essential for accurate disease diagnosis. The quality of manual labels plays a critical role in segmentation accuracy; yet, in practice, the labels between pathologists could be inconsistent, thus confusing the training process. In this work, we propose a novel label re-weighting framework to account for the reliability of different experts labels on each pixel according to its surrounding features. We further devise a new attention heatmap, which takes roughness as prior knowledge to guide the model to focus on important regions. Our approach is evaluated on the public Gleason 2019 datasets. The results show that our approach effectively improves the models robustness against noisy labels and outperforms state-of-the-art approaches.
The CNN-based methods have achieved impressive results in medical image segmentation, but it failed to capture the long-range dependencies due to the inherent locality of convolution operation. Transformer-based methods are popular in vision tasks re cently because of its capacity of long-range dependencies and get a promising performance. However, it lacks in modeling local context, although some works attempted to embed convolutional layer to overcome this problem and achieved some improvement, but it makes the feature inconsistent and fails to leverage the natural multi-scale features of hierarchical transformer, which limit the performance of models. In this paper, taking medical image segmentation as an example, we present MISSFormer, an effective and powerful Medical Image Segmentation tranSFormer. MISSFormer is a hierarchical encoder-decoder network and has two appealing designs: 1) A feed forward network is redesigned with the proposed Enhanced Transformer Block, which makes features aligned adaptively and enhances the long-range dependencies and local context. 2) We proposed Enhanced Transformer Context Bridge, a context bridge with the enhanced transformer block to model the long-range dependencies and local context of multi-scale features generated by our hierarchical transformer encoder. Driven by these two designs, the MISSFormer shows strong capacity to capture more valuable dependencies and context in medical image segmentation. The experiments on multi-organ and cardiac segmentation tasks demonstrate the superiority, effectiveness and robustness of our MISSFormer, the exprimental results of MISSFormer trained from scratch even outperforms state-of-the-art methods pretrained on ImageNet, and the core designs can be generalized to other visual segmentation tasks. The code will be released in Github.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا