ترغب بنشر مسار تعليمي؟ اضغط هنا

Context-Aware Legal Citation Recommendation using Deep Learning

138   0   0.0 ( 0 )
 نشر من قبل Matthias Grabmair
 تاريخ النشر 2021
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Lawyers and judges spend a large amount of time researching the proper legal authority to cite while drafting decisions. In this paper, we develop a citation recommendation tool that can help improve efficiency in the process of opinion drafting. We train four types of machine learning models, including a citation-list based method (collaborative filtering) and three context-based methods (text similarity, BiLSTM and RoBERTa classifiers). Our experiments show that leveraging local textual context improves recommendation, and that deep neural models achieve decent performance. We show that non-deep text-based methods benefit from access to structured case metadata, but deep models only benefit from such access when predicting from context of insufficient length. We also find that, even after extensive training, RoBERTa does not outperform a recurrent neural model, despite its benefits of pretraining. Our behavior analysis of the RoBERTa model further shows that predictive performance is stable across time and citation classes.



قيم البحث

اقرأ أيضاً

In this study, we address the challenges in developing a deep learning-based automatic patent citation recommendation system. Although deep learning-based recommendation systems have exhibited outstanding performance in various domains (such as movie s, products, and paper citations), their validity in patent citations has not been investigated, owing to the lack of a freely available high-quality dataset and relevant benchmark model. To solve these problems, we present a novel dataset called PatentNet that includes textual information and metadata for approximately 110,000 patents from the Google Big Query service. Further, we propose strong benchmark models considering the similarity of textual information and metadata (such as cooperative patent classification code). Compared with existing recommendation methods, the proposed benchmark method achieved a mean reciprocal rank of 0.2377 on the test set, whereas the existing state-of-the-art recommendation method achieved 0.2073.
Citation recommendation is an important task to assist scholars in finding candidate literature to cite. Traditional studies focus on static models of recommending citations, which do not explicitly distinguish differences between papers that are cau sed by temporal variations. Although, some researchers have investigated chronological citation recommendation by adding time related function or modeling textual topics dynamically. These solutions can hardly cope with function generalization or cold-start problems when there is no information for user profiling or there are isolated papers never being cited. With the rise and fall of science paradigms, scientific topics tend to change and evolve over time. People would have the time preference when citing papers, since most of the theoretical basis exist in classical readings that published in old time, while new techniques are proposed in more recent papers. To explore chronological citation recommendation, this paper wants to predict the time preference based on user queries, which is a probability distribution of citing papers published in different time slices. Then, we use this time preference to re-rank the initial citation list obtained by content-based filtering. Experimental results demonstrate that task performance can be further enhanced by time preference and its flexible to be added in other citation recommendation frameworks.
Both reviews and user-item interactions (i.e., rating scores) have been widely adopted for user rating prediction. However, these existing techniques mainly extract the latent representations for users and items in an independent and static manner. T hat is, a single static feature vector is derived to encode her preference without considering the particular characteristics of each candidate item. We argue that this static encoding scheme is difficult to fully capture the users preference. In this paper, we propose a novel context-aware user-item representation learning model for rating prediction, named CARL. Namely, CARL derives a joint representation for a given user-item pair based on their individual latent features and latent feature interactions. Then, CARL adopts Factorization Machines to further model higher-order feature interactions on the basis of the user-item pair for rating prediction. Specifically, two separate learning components are devised in CARL to exploit review data and interaction data respectively: review-based feature learning and interaction-based feature learning. In review-based learning component, with convolution operations and attention mechanism, the relevant features for a user-item pair are extracted by jointly considering their corresponding reviews. However, these features are only review-driven and may not be comprehensive. Hence, interaction-based learning component further extracts complementary features from interaction data alone, also on the basis of user-item pairs. The final rating score is then derived with a dynamic linear fusion mechanism. Experiments on five real-world datasets show that CARL achieves significantly better rating prediction accuracy than existing state-of-the-art alternatives. Also, with attention mechanism, we show that the relevant information in reviews can be highlighted to interpret the rating prediction.
Grocery recommendation is an important recommendation use-case, which aims to predict which items a user might choose to buy in the future, based on their shopping history. However, existing methods only represent each user and item by single determi nistic points in a low-dimensional continuous space. In addition, most of these methods are trained by maximizing the co-occurrence likelihood with a simple Skip-gram-based formulation, which limits the expressive ability of their embeddings and the resulting recommendation performance. In this paper, we propose the Variational Bayesian Context-Aware Representation (VBCAR) model for grocery recommendation, which is a novel variational Bayesian model that learns the user and item latent vectors by leveraging basket context information from past user-item interactions. We train our VBCAR model based on the Bayesian Skip-gram framework coupled with the amortized variational inference so that it can learn more expressive latent representations that integrate both the non-linearity and Bayesian behaviour. Experiments conducted on a large real-world grocery recommendation dataset show that our proposed VBCAR model can significantly outperform existing state-of-the-art grocery recommendation methods.
Domain specific information retrieval process has been a prominent and ongoing research in the field of natural language processing. Many researchers have incorporated different techniques to overcome the technical and domain specificity and provide a mature model for various domains of interest. The main bottleneck in these studies is the heavy coupling of domain experts, that makes the entire process to be time consuming and cumbersome. In this study, we have developed three novel models which are compared against a golden standard generated via the on line repositories provided, specifically for the legal domain. The three different models incorporated vector space representations of the legal domain, where document vector generation was done in two different mechanisms and as an ensemble of the above two. This study contains the research being carried out in the process of representing legal case documents into different vector spaces, whilst incorporating semantic word measures and natural language processing techniques. The ensemble model built in this study, shows a significantly higher accuracy level, which indeed proves the need for incorporation of domain specific semantic similarity measures into the information retrieval process. This study also shows, the impact of varying distribution of the word similarity measures, against varying document vector dimensions, which can lead to improvements in the process of legal information retrieval.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا