ترغب بنشر مسار تعليمي؟ اضغط هنا

Inertial manifolds for 3D complex Ginzburg-Landau equations with periodic boundary conditions

115   0   0.0 ( 0 )
 نشر من قبل Sergey Zelik V.
 تاريخ النشر 2021
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

We prove the existence of an Inertial Manifold for 3D complex Ginzburg-Landau equation with periodic boundary conditions as well as for more general cross-diffusion system assuming that the dispersive exponent is not vanishing. The result is obtained under the assumption that the parameters of the equation is chosen in such a way that the finite-time blow up of smooth solutions does not take place. For the proof of this result we utilize the recently suggested method of spatio-temporal averaging.



قيم البحث

اقرأ أيضاً

The existence of an inertial manifold for the 3D Cahn-Hilliard equation with periodic boundary conditions is verified using the proper extension of the so-called spatial averaging principle introduced by G. Sell and J. Mallet-Paret. Moreover, the extra regularity of this manifold is also obtained.
88 - Anna Kostianko 2015
The existence of an inertial manifold for the modified Leray-$alpha$ model with periodic boundary conditions in three-dimensional space is proved by using the so-called spatial averaging principle. Moreover, an adaptation of the Perron method for con structing inertial manifolds in the particular case of zero spatial averaging is suggested.
This is the second part of our study of the Inertial Manifolds for 1D systems of reaction-diffusion-advection equations initiated in cite{KZI} and it is devoted to the case of periodic boundary conditions. It is shown that, in contrast to the case of Dirichlet or Neumann boundary conditions, considered in the first part, Inertial Manifolds may not exist in the case of systems endowed by periodic boundary conditions. However, as also shown, inertial manifolds still exist in the case of scalar reaction-diffusion-advection equations. Thus, the existence or non-existence of inertial manifolds for this class of dissipative systems strongly depend on the choice of boundary conditions.
This is the first part of our study of inertial manifolds for the system of 1D reaction-diffusion-advection equations which is devoted to the case of Dirichlet or Neumann boundary conditions. Although this problem does not initially possess the spect ral gap property, it is shown that this property is satisfied after the proper non-local change of the dependent variable. The case of periodic boundary conditions where the situation is principally different and the inertial manifold may not exist is considered in the second part of our study.
121 - Stephane Mischler 2010
We prove global stability results of {sl DiPerna-Lions} renormalized solutions for the initial boundary value problem associated to some kinetic equations, from which existence results classically follow. The (possibly nonlinear) boundary conditions are completely or partially diffuse, which includes the so-called Maxwell boundary conditions, and we prove that it is realized (it is not only a boundary inequality condition as it has been established in previous works). We are able to deal with Boltzmann, Vlasov-Poisson and Fokker-Planck type models. The proofs use some trace theorems of the kind previously introduced by the author for the Vlasov equations, new results concerning weak-weak convergence (the renormalized convergence and the biting $L^1$-weak convergence), as well as the Darroz`es-Guiraud information in a crucial way.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا