ﻻ يوجد ملخص باللغة العربية
This article presents a new hand architecture with three under-actuated fingers. Each finger performs spatial movements to achieve more complex and varied grasping than the existing planar-movement fingers. The purpose of this hand is to grasp complex-shaped workpieces as they leave the machining centres. Among the taxonomy of grips, cylindrical and spherical grips are often used to grasp heavy objects. A combination of these two modes makes it possible to capture most of the workpieces machined with 5-axis machines. However, the change in grasping mode requires the fingers to reconfigure themselves to perform spatial movements. This solution requires the addition of two or three actuators to change the position of the fingers and requires sensors to recognize the shape of the workpiece and determine the type of grasp to be used. This article proposes to extend the notion of under-actuated fingers to spatial movements. After a presentation of the kinematics of the fingers, the problem of stability is discussed as well as the transmission of forces in this mechanism. The complete approach for calculating the stability conditions is presented from the study of Jacobian force transmission matrices. CAD representations of the hand and its behavior in spherical and cylindrical grips are presented.
Most current anthropomorphic robotic hands can realize part of the human hand functions, particularly for object grasping. However, due to the complexity of the human hand, few current designs target at daily object manipulations, even for simple act
Soft robotic hands and grippers are increasingly attracting attention as a robotic end-effector. Compared with rigid counterparts, they are safer for human-robot and environment-robot interactions, easier to control, lower cost and weight, and more c
A new fluid-driven soft robot hand in this study uses the idea of the bionics and has the anthropomorphic form, which is oriented to the flexible grasp function. The soft robot hand is composed of a new kind of multi-freedom soft finger and soft palm
This paper presents preliminary results of the design, development, and evaluation of a hand rehabilitation glove fabricated using lobster-inspired hybrid design with rigid and soft components for actuation. Inspired by the bending abdomen of lobster
Current anthropomorphic robotic hands mainly focus on improving their dexterity by devising new mechanical structures and actuation systems. However, most of them rely on a single structure/system (e.g., bone-only) and ignore the fact that the human