ترغب بنشر مسار تعليمي؟ اضغط هنا

Clean vs Dirty: Anisotropic Scattering Caused by Apical Oxygen Vacancies in Overdoped Cuprates

77   0   0.0 ( 0 )
 نشر من قبل Da Wang
 تاريخ النشر 2021
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

There is a hot debate on the anomalous behavior of superfluid density $rho_s$ in overdoped La$_{2-x}$Sr$_x$CuO$_4$ films in recent years. Its linear temperature dependence $rho_s(0)-rho_s(T)propto T$ infers the superconductors are clean, but the zero temperature value $rho_s(0)propto T_c$ is a hallmark of the dirty limit in the Bardeen-Cooper-Schrieffer (BCS) framework (Bozovic et al., 2016). In this work, we show that the apical oxygen vacancies can lead to an anisotropic scattering rate $Gamma_dcos^2(2theta)$, which can explain the above two linear scalings simultaneously, and thus provides a plausible solution to this clean-dirty paradox. Furthermore, by analyzing the optical conductivity, it may also explain the ``missing Drude weight upon doping as reported in the THz experiment (Mahmood et al., 2019). Therefore, we conclude that the superconducting states of the overdoped cuprates are consistent with the disordered BCS theory.



قيم البحث

اقرأ أيضاً

The superconducting properties of high-tc materials are functions of carriers concentration, which is controlled by the concentration of defects including heterovalent cations, interstitial oxygen ions, and oxygen vacancies. Here we combine low-tempe rature thermal treatment of La$_{2-x}$Sr$_{x}$CuO$_{4}$ epitaxial thin films and confocal Raman spectroscopy to control and investigate oxygen vacancies. We demonstrate that the apical site is the most favorable position to accommodate oxygen vacancies under low-temperature annealing conditions. Additionally we show that in high-quality films of overdoped La$_{2-x}$Sr$_{x}$CuO$_{4}$, oxygen vacancies strongly deform the oxygen environment around the copper ions. This observation is consistent with previous defect-chemical studies, and calls for further investigation of the defect induced properties in the overdoped regime of the hole-doped lanthanum cuprates.
109 - A. Leo , G. Grimaldi , R. Citro 2010
We study the quasiparticle energy relaxation processes in superconducting Nb films of different thicknesses corresponding to different electron mean free paths in a state far from equilibrium, that is the highly dissipative flux-flow state driven up to the instability point. From the measured current-voltage curves we derive the vortex critical velocity $v^{*}$ for several temperatures. From the $v^{*}(T)$ values, the quasiparticle energy relaxation time $tau_{epsilon}$ is evaluated within the Larkin-Ovchinnikov model and numerical calculations of the quasiparticle energy relaxation rates are carried out to support the experimental findings. Besides the expected constant behavior of $tau_{epsilon}(T)$ for the dirty samples, we observe a strong temperature dependence of the quasiparticle energy relaxation time in the clean samples. This feature is associated with the increasing contribution from the electron-phonon scattering process as the dirty limit is approached from the clean regime.
We report microwave surface impedances of FeSe$_{0.4}$Te$_{0.6}$ single crystals measured at 12, 19, and 44 GHz. The penetration depth exhibits a power law behavior, $delta lambda_L=lambda_L (T)-lambda_L (0) propto CT^n$ with an exponent $nsimeq 2$, which is considered to result from impurity scattering. This behavior is consistent with $spm$-wave pairing symmetry. The temperature dependence of the superfluid density largely deviates from the behavior expected in the BCS theory. We believe that this deviation is caused by the crossover from the dirty regime near $T_c$ to the clean regime at low temperatures, which is supported by the rapid increase of the quasiparticle scattering time obtained from the microwave conductivity. We also believe that the previously published data of the superfluid density can be interpreted in this scenario.
The thermoelectric power S(T) of single-layer Bi2Sr2CuO6+d is studied as a function of oxygen doping in the strongly overdoped region of the phase diagram (T, d). As other physical properties in this region, diffusion thermopower Sdiff(T) also shows an important deviation from conventional Fermi liquid behaviour. This departure from T-linear S(T) dependence together with the results of susceptibility on the same samples suggest that the origin of the observed non-metallic behaviour is the existence of a singularity in the density of states near the Fermi level. The doping and temperature dependence of themopower is compared with a tight-binding band model.
We present a theoretical framework for understanding the behavior of the normal and superconducting states of overdoped cuprate high temperature superconductors in the vicinity of the doping-tuned quantum superconductor-to-metal transition. The key i ngredients on which we focus are d-wave pairing, a flat antinodal dispersion, and disorder. Even for homogeneous disorder, these lead to effectively granular superconducting correlations and a superconducting transition temperature determined in large part by the superfluid stiffness rather than the pairing scale.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا