ترغب بنشر مسار تعليمي؟ اضغط هنا

Large-scale regularity for the stationary Navier-Stokes equations over non-Lipschitz boundaries

169   0   0.0 ( 0 )
 نشر من قبل Jinping Zhuge
 تاريخ النشر 2021
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

In this paper we address the large-scale regularity theory for the stationary Navier-Stokes equations in highly oscillating bumpy John domains. These domains are very rough, possibly with fractals or cusps, at the microscopic scale, but are amenable to the mathematical analysis of the Navier-Stokes equations. We prove: (i) a large-scale Calderon-Zygmund estimate, (ii) a large-scale Lipschitz estimate, (iii) large-scale higher-order regularity estimates, namely, $C^{1,gamma}$ and $C^{2,gamma}$ estimates. These nice regularity results are inherited only at mesoscopic scales, and clearly fail in general at the microscopic scales. We emphasize that the large-scale $C^{1,gamma}$ regularity is obtained by using first-order boundary layers constructed via a new argument. The large-scale $C^{2,gamma}$ regularity relies on the construction of second-order boundary layers, which allows for certain boundary data with linear growth at spatial infinity. To the best of our knowledge, our work is the first to carry out such an analysis. In the wake of many works in quantitative homogenization, our results strongly advocate in favor of considering the boundary regularity of the solutions to fluid equations as a multiscale problem, with improved regularity at or above a certain scale.



قيم البحث

اقرأ أيضاً

163 - Daoyuan Fang , Chenyin Qian 2012
In this article, we establish sufficient conditions for the regularity of solutions of Navier-Stokes equations based on one of the nine entries of the gradient tensor. We improve the recently results of C.S. Cao, E.S. Titi (Arch. Rational Mech.Anal. 202 (2011) 919-932) and Y. Zhou, M. Pokorn$acute{y}$ (Nonlinearity 23, 1097-1107 (2010)).
291 - Jean-Yves Chemin 2008
In three previous papers by the two first authors, classes of initial data to the three dimensional, incompressible Navier-Stokes equations were presented, generating a global smooth solution although the norm of the initial data may be chosen arbitr arily large. The main feature of the initial data considered in the last paper is that it varies slowly in one direction, though in some sense it is ``well prepared (its norm is large but does not depend on the slow parameter). The aim of this article is to generalize the setting of that last paper to an ``ill prepared situation (the norm blows up as the small parameter goes to zero).The proof uses the special structure of the nonlinear term of the equation.
68 - W. Tan , Z.Yin 2021
In this paper, we consider the energy conservation and regularity of the weak solution $u$ to the Navier-Stokes equations in the endpoint case. We first construct a divergence-free field $u(t,x)$ which satisfies $lim_{tto T}sqrt{T-t}||u(t)||_{BMO}<in fty$ and $lim_{tto T}sqrt{T-t}||u(t)||_{L^infty}=infty$ to demonstrate that the Type II singularity is admissible in the endpoint case $uin L^{2,infty}(BMO)$. Secondly, we prove that if a suitable weak solution $u(t,x)$ satisfying $||u||_{L^{2,infty}([0,T];BMO(Omega))}<infty$ for arbitrary $Omegasubseteqmathbb{R}^3$ then the local energy equality is valid on $[0,T]timesOmega$. As a corollary, we also prove $||u||_{L^{2,infty}([0,T];BMO(mathbb{R}^3))}<infty$ implies the global energy equality on $[0,T]$. Thirdly, we show that as the solution $u$ approaches a finite blowup time $T$, the norm $||u(t)||_{BMO}$ must blow up at a rate faster than $frac{c}{sqrt{T-t}}$ with some absolute constant $c>0$. Furthermore, we prove that if $||u_3||_{L^{2,infty}([0,T];BMO(mathbb{R}^3))}=M<infty$ then there exists a small constant $c_M$ depended on $M$ such that if $||u_h||_{L^{2,infty}([0,T];BMO(mathbb{R}^3))}leq c_M$ then $u$ is regular on $(0,T]timesmathbb{R}^3$.
167 - Daoyuan Fang , Chenyin Qian 2012
Several types of new regularity criteria for Leray-Hopf weak solutions $u$ to the 3D Navier-Stokes equations are obtained. Some of them are based on the third component $u_3$ of velocity under Prodi-Serrin index condition, another type is in terms of $omega_3$ and $partial_3u_3$ with Prodi-Serrin index condition. And a very recent work of the authors, based on only one of the nine entries of the gradient tensor, is renovated.
130 - Hongjie Dong , Xumin Gu 2013
We consider suitable weak solutions of the incompressible Navier--Stokes equations in two cases: the 4D time-dependent case and the 6D stationary case. We prove that up to the boundary, the two-dimensional Hausdorff measure of the set of singular points is equal to zero in both cases.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا