ترغب بنشر مسار تعليمي؟ اضغط هنا

Compactness for $Omega$-Yang-Mills connections

162   0   0.0 ( 0 )
 نشر من قبل Richard Wentworth
 تاريخ النشر 2021
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

On a Riemannian manifold of dimension $n$ we extend the known analytic results on Yang-Mills connections to the class of connections called $Omega$-Yang-Mills connections, where $Omega$ is a smooth, not necessarily closed, $(n-4)$-form. Special cases include $Omega$-anti-self-dual connections and Hermitian-Yang-Mills connections over general complex manifolds. By a key observation, a weak compactness result is obtained for moduli space of smooth $Omega$-Yang-Mills connections with uniformly $L^2$ bounded curvature, and it can be improved in the case of Hermitian-Yang-Mills connections over general complex manifolds. A removable singularity theorem for singular $Omega$-Yang-Mills connections on a trivial bundle with small energy concentration is also proven. As an application, it is shown how to compactify the moduli space of smooth Hermitian-Yang-Mills connections on unitary bundles over a class of balanced manifolds of Hodge-Riemann type. This class includes the metrics coming from multipolarizations, and in particular, the Kaehler metrics. In the case of multipolarizations on a projective algebraic manifold, the compactification of smooth irreducible Hermitian-Yang-Mills connections with fixed determinant modulo gauge transformations inherits a complex structure from algebro-geometric considerations.



قيم البحث

اقرأ أيضاً

133 - Casey Lynn Kelleher 2017
In the spirit of recent work of Lamm, Malchiodi and Micallef in the setting of harmonic maps, we identify Yang-Mills connections obtained by approximations with respect to the Yang-Mills {alpha}-energy. More specifically, we show that for the SU(2) H opf fibration over the four sphere, for sufficiently small {alpha} values the SO(4) invariant ADHM instanton is the unique {alpha}-critical point which has Yang-Mills {alpha}-energy lower than a specific threshold.
We investigate stability of pullback bundles with respect to adiabatic classes on the total space of holomorphic submersions. We show that the pullback of a stable (resp. unstable) bundle remains stable (resp. unstable) for these classes. Assuming th e graded object of a Jordan-Holder filtration to be locally free, we obtain a necessary and sufficient criterion for when the pullback of a strictly semistable vector bundle will be stable, in terms of intersection numbers on the base of the fibration. The arguments rely on adiabatic constructions of hermitian Yang-Mills connections together with the classical Donaldson-Uhlenbeck-Yau correspondence.
We prove a conformally invariant estimate for the index of Schrodinger operators acting on vector bundles over four-manifolds, related to the classical Cwikel-Lieb-Rozenblum estimate. Applied to Yang-Mills connections we obtain a bound for the index in terms of its energy which is conformally invariant, and captures the sharp growth rate. Furthermore we derive an index estimate for Einstein metrics in terms of the topology and the Einstein-Hilbert energy. Lastly we derive conformally invariant estimates for the Betti numbers of an oriented four-manifold with positive scalar curvature.
226 - Daniel A. Ramras 2018
We revisit Atiyah and Botts study of Morse theory for the Yang-Mills functional over a Riemann surface, and establish new formulas for the minimum codimension of a (non-semi-stable) stratum. These results yield the exact connectivity of the natural m ap (C_{min} E)//G(E) --> Map^E (M, BU(n)) from the homotopy orbits of the space of central Yang-Mills connections to the classifying space of the gauge group G(E). All of these results carry over to non-orientable surfaces via Ho and Lius non-orientable Yang-Mills theory. A somewhat less detailed version of this paper (titled On the Yang-Mills stratification for surfaces) will appear in the Proceedings of the AMS.
217 - Casey Lynn Kelleher 2015
We define a family of functionals generalizing the Yang-Mills functional. We study the corresponding gradient flows and prove long-time existence and convergence results for subcritical dimensions as well as a bubbling criterion for the critical dime nsions. Consequently, we have an alternate proof of the convergence of Yang-Mills flow in dimensions 2 and 3 given by Rade and the bubbling criterion in dimension 4 of Struwe in the case where the initial flow data is smooth.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا