This paper studies the differential lattice, defined to be a lattice $L$ equipped with a map $d:Lto L$ that satisfies a lattice analog of the Leibniz rule for a derivation. Isomorphic differential lattices are studied and classifications of differential lattices are obtained for some basic lattices. Several families of derivations on a lattice are explicitly constructed, giving realizations of the lattice as lattices of derivations. Derivations on a finite distributive lattice are shown to have a natural structure of lattice. Moreover, derivations on a complete infinitely distributive lattice form a complete lattice. For a general lattice, it is conjectured that its poset of derivations is a lattice that uniquely determines the given lattice.