ﻻ يوجد ملخص باللغة العربية
Metric-based few-shot fine-grained image classification (FSFGIC) aims to learn a transferable feature embedding network by estimating the similarities between query images and support classes from very few examples. In this work, we propose, for the first time, to introduce the non-linear data projection concept into the design of FSFGIC architecture in order to address the limited sample problem in few-shot learning and at the same time to increase the discriminability of the model for fine-grained image classification. Specifically, we first design a feature re-abstraction embedding network that has the ability to not only obtain the required semantic features for effective metric learning but also re-enhance such features with finer details from input images. Then the descriptors of the query images and the support classes are projected into different non-linear spaces in our proposed similarity metric learning network to learn discriminative projection factors. This design can effectively operate in the challenging and restricted condition of a FSFGIC task for making the distance between the samples within the same class smaller and the distance between samples from different classes larger and for reducing the coupling relationship between samples from different categories. Furthermore, a novel similarity measure based on the proposed non-linear data project is presented for evaluating the relationships of feature information between a query image and a support set. It is worth to note that our proposed architecture can be easily embedded into any episodic training mechanisms for end-to-end training from scratch. Extensive experiments on FSFGIC tasks demonstrate the superiority of the proposed methods over the state-of-the-art benchmarks.
Few-shot learning for fine-grained image classification has gained recent attention in computer vision. Among the approaches for few-shot learning, due to the simplicity and effectiveness, metric-based methods are favorably state-of-the-art on many t
The goal of few-shot fine-grained image classification is to recognize rarely seen fine-grained objects in the query set, given only a few samples of this class in the support set. Previous works focus on learning discriminative image features from a
Deep Convolutional Neural Network (DCNN) and Transformer have achieved remarkable successes in image recognition. However, their performance in fine-grained image recognition is still difficult to meet the requirements of actual needs. This paper pro
While deep learning has been successfully applied to many real-world computer vision tasks, training robust classifiers usually requires a large amount of well-labeled data. However, the annotation is often expensive and time-consuming. Few-shot imag
Few-shot image classification (FSIC), which requires a model to recognize new categories via learning from few images of these categories, has attracted lots of attention. Recently, meta-learning based methods have been shown as a promising direction