ترغب بنشر مسار تعليمي؟ اضغط هنا

Quantum Architecture Search with Meta-learning

117   0   0.0 ( 0 )
 نشر من قبل Haozhen Situ
 تاريخ النشر 2021
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Hybrid quantum-classical (HQC) algorithms have been successfully applied to quantum approximate optimization algorithms, variational quantum compiling and quantum machine learning models. The performances of HQC algorithms largely depend on the architecture of parameterized quantum circuits (PQCs). Quantum architecture search (QAS) aims to automate the design of PQCs with intelligence algorithms, e.g., genetic algorithms and reinforcement learning. Recently a differentiable quantum architecture search (DQAS) algorithm is proposed to speed up the circuit design. However, these QAS algorithms do not use prior experiences and search the quantum architecture from scratch for each new task, which is inefficient and time consuming. In this paper, we propose a meta quantum architecture search (MetaQAS) algorithm, which learns good initialization heuristics of the architecture (i.e., meta-architecture), along with the meta-parameters of quantum gates from a number of training tasks such that they can adapt to new tasks with a small number of gradient updates, which leads to fast learning on new tasks. Simulation results of variational quantum compiling on three- and four-qubit circuits show that the architectures of MetaQAS converge after 30 and 80 iterations respectively, which are only 1/3 and 2/3 of those needed in the DQAS algorithm. Besides, MetaQAS can achieve lower losses than DQAS after fine-tuning of gate parameters.



قيم البحث

اقرأ أيضاً

Recent advances in quantum computing have drawn considerable attention to building realistic application for and using quantum computers. However, designing a suitable quantum circuit architecture requires expert knowledge. For example, it is non-tri vial to design a quantum gate sequence for generating a particular quantum state with as fewer gates as possible. We propose a quantum architecture search framework with the power of deep reinforcement learning (DRL) to address this challenge. In the proposed framework, the DRL agent can only access the Pauli-$X$, $Y$, $Z$ expectation values and a predefined set of quantum operations for learning the target quantum state, and is optimized by the advantage actor-critic (A2C) and proximal policy optimization (PPO) algorithms. We demonstrate a successful generation of quantum gate sequences for multi-qubit GHZ states without encoding any knowledge of quantum physics in the agent. The design of our framework is rather general and can be employed with other DRL architectures or optimization methods to study gate synthesis and compilation for many quantum states.
Quantum architecture search (QAS) is the process of automating architecture engineering of quantum circuits. It has been desired to construct a powerful and general QAS platform which can significantly accelerate current efforts to identify quantum a dvantages of error-prone and depth-limited quantum circuits in the NISQ era. Hereby, we propose a general framework of differentiable quantum architecture search (DQAS), which enables automated designs of quantum circuits in an end-to-end differentiable fashion. We present several examples of circuit design problems to demonstrate the power of DQAS. For instance, unitary operations are decomposed into quantum gates, noisy circuits are re-designed to improve accuracy, and circuit layouts for quantum approximation optimization algorithm are automatically discovered and upgraded for combinatorial optimization problems. These results not only manifest the vast potential of DQAS being an essential tool for the NISQ application developments, but also present an interesting research topic from the theoretical perspective as it draws inspirations from the newly emerging interdisciplinary paradigms of differentiable programming, probabilistic programming, and quantum programming.
Variational quantum algorithms (VQAs) are widely speculated to deliver quantum advantages for practical problems under the quantum-classical hybrid computational paradigm in the near term. Both theoretical and practical developments of VQAs share man y similarities with those of deep learning. For instance, a key component of VQAs is the design of task-dependent parameterized quantum circuits (PQCs) as in the case of designing a good neural architecture in deep learning. Partly inspired by the recent success of AutoML and neural architecture search (NAS), quantum architecture search (QAS) is a collection of methods devised to engineer an optimal task-specific PQC. It has been proven that QAS-designed VQAs can outperform expert-crafted VQAs under various scenarios. In this work, we propose to use a neural network based predictor as the evaluation policy for QAS. We demonstrate a neural predictor guided QAS can discover powerful PQCs, yielding state-of-the-art results for various examples from quantum simulation and quantum machine learning. Notably, neural predictor guided QAS provides a better solution than that by the random-search baseline while using an order of magnitude less of circuit evaluations. Moreover, the predictor for QAS as well as the optimal ansatz found by QAS can both be transferred and generalized to address similar problems.
221 - Xin Chen , Yawen Duan , Zewei Chen 2020
Neural Architecture Search (NAS) achieved many breakthroughs in recent years. In spite of its remarkable progress, many algorithms are restricted to particular search spaces. They also lack efficient mechanisms to reuse knowledge when confronting mul tiple tasks. These challenges preclude their applicability, and motivate our proposal of CATCH, a novel Context-bAsed meTa reinforcement learning (RL) algorithm for transferrable arChitecture searcH. The combination of meta-learning and RL allows CATCH to efficiently adapt to new tasks while being agnostic to search spaces. CATCH utilizes a probabilistic encoder to encode task properties into latent context variables, which then guide CATCHs controller to quickly catch top-performing networks. The contexts also assist a network evaluator in filtering inferior candidates and speed up learning. Extensive experiments demonstrate CATCHs universality and search efficiency over many other widely-recognized algorithms. It is also capable of handling cross-domain architecture search as competitive networks on ImageNet, COCO, and Cityscapes are identified. This is the first work to our knowledge that proposes an efficient transferrable NAS solution while maintaining robustness across various settings.
Network Architecture Search (NAS) methods have recently gathered much attention. They design networks with better performance and use a much shorter search time compared to traditional manual tuning. Despite their efficiency in model deployments, mos t NAS algorithms target a single task on a fixed hardware system. However, real-life few-shot learning environments often cover a great number of tasks (T ) and deployments on a wide variety of hardware platforms (H ). The combinatorial search complexity T times H creates a fundamental search efficiency challenge if one naively applies existing NAS methods to these scenarios. To overcome this issue, we show, for the first time, how to rapidly adapt model architectures to new tasks in a many-task many-hardware few-shot learning setup by integrating Model Agnostic Meta Learning (MAML) into the NAS flow. The proposed NAS method (H-Meta-NAS) is hardware-aware and performs optimisation in the MAML framework. H-Meta-NAS shows a Pareto dominance compared to a variety of NAS and manual baselines in popular few-shot learning benchmarks with various hardware platforms and constraints. In particular, on the 5-way 1-shot Mini-ImageNet classification task, the proposed method outperforms the best manual baseline by a large margin (5.21% in accuracy) using 60% less computation.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا