ﻻ يوجد ملخص باللغة العربية
Many-body open quantum systems balance internal dynamics against decoherence from interactions with an environment. Here, we explore this balance via random quantum circuits implemented on a trapped ion quantum computer, where the system evolution is represented by unitary gates with interspersed projective measurements. As the measurement rate is varied, a purification phase transition is predicted to emerge at a critical point akin to a fault-tolerent threshold. We probe the pure phase, where the system is rapidly projected to a deterministic state conditioned on the measurement outcomes, and the mixed or coding phase, where the initial state becomes partially encoded into a quantum error correcting codespace. We find convincing evidence of the two phases and show numerically that, with modest system scaling, critical properties of the transition clearly emerge.
The availability of a universal quantum computer will have fundamental impact on a vast number of research fields and society as a whole. An increasingly large scientific and industrial community is working towards the realization of such a device. A
Quantum computers have the potential to efficiently simulate the dynamics of many interacting quantum particles, a classically intractable task of central importance to fields ranging from chemistry to high-energy physics. However, precision and memo
Fault-tolerant quantum error correction (QEC) is crucial for unlocking the true power of quantum computers. QEC codes use multiple physical qubits to encode a logical qubit, which is protected against errors at the physical qubit level. Here we use a
The development and theory of an experiment to investigate quantum computation with trapped calcium ions is described. The ion trap, laser and ion requirements are determined, and the parameters required for quantum logic operations as well as simple quantum factoring are described.
We briefly review the development and theory of an experiment to investigate quantum computation with trapped calcium ions. The ion trap, laser and ion requirements are determined, and the parameters required for simple quantum logic operations are described