ترغب بنشر مسار تعليمي؟ اضغط هنا

Uncovering the ultimate planet impostor. An eclipsing brown dwarf in a hierarchical triple with two evolved stars

121   0   0.0 ( 0 )
 نشر من قبل Jorge Lillo-Box
 تاريخ النشر 2021
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Exoplanet searches through space-based photometric time series have shown to be very efficient in recent years. However, follow-up efforts on the detected planet candidates have been demonstrated to be critical to uncover the true nature of the transiting objects. In this paper we show a detailed analysis of one of those false positives hidden as planetary signals. In this case, the candidate KOI-3886.01 showed clear evidence of a planetary nature from various techniques. Indeed, the properties of the fake planet set it among the most interesting and promising for the study of planetary evolution as the star leaves the main sequence. To unveil the true nature of this system, we present a complete set of observational techniques including high-spatial resolution imaging, high-precision photometric time series (showing eclipses, phase curve variations and asteroseismology signals), high-resolution spectroscopy and derived radial velocities, to unveil the true nature of this planet candidate. We find that KOI-3886.01 is an interesting false positive case: a hierarchical triple system composed by a $sim$K2III giant star (KOI-3886A) accompanied by a close-in eclipsing binary formed by a subgiant $sim$G4IV star (KOI-3886B) and a brown dwarf (KOI-3886C). In particular, KOI-3886C is one of the most irradiated brown dwarfs known to date, showing the largest radius in this substellar regime. It is also the first eclipsing brown dwarf known around an evolved star. In this paper we highlight the relevance of complete sets of follow-up observations to extrasolar planets detected by the transit technique using large-pixel photometers such as Kepler and TESS, and in the future, PLATO. In particular, multi-color high-spatial resolution imaging was the first hint toward ruling out the planet scenario in this system.



قيم البحث

اقرأ أيضاً

We present an analysis of the anomalous microlensing event, MOA-2010-BLG-073, announced by the Microlensing Observations in Astrophysics survey on 2010-03-18. This event was remarkable because the source was previously known to be photometrically v ariable. Analyzing the pre-event source lightcurve, we demonstrate that it is an irregular variable over time scales >200d. Its dereddened color, $(V-I)_{S,0}$, is 1.221$pm$0.051mag and from our lens model we derive a source radius of 14.7$pm$1.3 $R_{odot}$, suggesting that it is a red giant star. We initially explored a number of purely microlensing models for the event but found a residual gradient in the data taken prior to and after the event. This is likely to be due to the variability of the source rather than part of the lensing event, so we incorporated a slope parameter in our model in order to derive the true parameters of the lensing system. We find that the lensing system has a mass ratio of q=0.0654$pm$0.0006. The Einstein crossing time of the event, $T_{rm{E}}=44.3$pm$0.1d, was sufficiently long that the lightcurve exhibited parallax effects. In addition, the source trajectory relative to the large caustic structure allowed the orbital motion of the lens system to be detected. Combining the parallax with the Einstein radius, we were able to derive the distance to the lens, $D_L$=2.8$pm$0.4kpc, and the masses of the lensing objects. The primary of the lens is an M-dwarf with $M_{L,p}$=0.16$pm0.03M_{odot}$ while the companion has $M_{L,s}$=11.0$pm2.0M_{rm{J}}$ putting it in the boundary zone between planets and brown dwarfs.
The Kepler spacecraft has been monitoring the light from 150,000 stars in its primary quest to detect transiting exoplanets. Here we report on the detection of an eclipsing stellar hierarchical triple, identified in the Kepler photometry. KOI-126 (A, (B, C)), is composed of a low-mass binary (masses M_B = 0.2413+/-0.0030 M_Sun, M_C = 0.2127+/-0.0026 M_Sun; radii R_B = 0.2543+/-0.0014 R_Sun, R_C = 0.2318+/-0.0013 R_Sun; orbital period P_1 = 1.76713+/-0.00019 days) on an eccentric orbit about a third star (mass M_A = 1.347+/-0.032 M_Sun; radius R_A = 2.0254+/-0.0098 R_Sun; period of orbit around the low-mass binary P_2 = 33.9214+/-0.0013 days; eccentricity of that orbit e_2 = 0.3043+/-0.0024). The low-mass pair probe the poorly sampled fully-convective stellar domain offering a crucial benchmark for theoretical stellar models.
We analyze KMT-2019-BLG-1339, a microlensing event with an obvious but incompletely resolved brief anomaly feature around the peak of the light curve. Although the origin of the anomaly is identified to be a companion to the lens with a low mass rati o $q$, the interpretation is subject to two different degeneracy types. The first type is the ambiguity in $rho$, representing the angular source radius scaled to the angular radius of the Einstein ring, $theta_{rm E}$, and the other is the $sleftrightarrow s^{-1}$ degeneracy. The former type, `finite-source degeneracy, causes ambiguities in both $s$ and $q$, while the latter induces an ambiguity only in $s$. Here $s$ denotes the separation (in units of $theta_{rm E}$) in projection between the lens components. We estimate that the lens components have masses $(M_1, M_2)sim (0.27^{+0.36}_{-0.15}~M_odot, 11^{+16}_{-7}~M_{rm J})$ and $sim (0.48^{+0.40}_{-0.28}~M_odot, 1.3^{+1.1}_{-0.7}~M_{rm J})$ according to the two solutions subject to the finite-source degeneracy, indicating that the lens comprises an M dwarf and a companion with a mass around the planet/brown dwarf boundary or a Jovian-mass planet. It is possible to lift the finite-source degeneracy by conducting future observations utilizing a high resolution instrument because the relative lens-source proper motion predicted by the solutions are widely different.
It is well-known that stars with giant planets are on average more metal-rich than stars without giant planets, whereas stars with detected low-mass planets do not need to be metal-rich. With the aim of studying the weak boundary that separates giant planets and brown dwarfs (BDs) and their formation mechanism, we analyze the spectra of a sample of stars with already confirmed BD companions both by radial velocity and astrometry. We employ standard and automatic tools to perform an EW-based analysis and to derive chemical abundances from CORALIE spectra of stars with BD companions. We compare these abundances with those of stars without detected planets and with low-mass and giant-mass planets. We find that stars with BDs do not have metallicities and chemical abundances similar to those of giant-planet hosts but they resemble the composition of stars with low-mass planets. The distribution of mean abundances of $alpha$-elements and iron peak elements of stars with BDs exhibit a peak at about solar abundance whereas for stars with low-mass and high-mass planets the [X$_alpha$/H] and [X$_{rm Fe}$/H] peak abundances remain at $sim -0.1$~dex and $sim +0.15$~dex, respectively. We display these element abundances for stars with low-mass and high-mass planets, and BDs versus the minimum mass, $m_C sin i$, of the most-massive substellar companion in each system, and we find a maximum in $alpha$-element as well as Fe-peak abundances at $m_C sin i sim 1.35pm 0.20$ jupiter masses. We discuss the implication of these results in the context of the formation scenario of BDs in comparison with that of giant planets.
131 - L. Tal-Or , A. Santerne , T. Mazeh 2011
This paper presents the case of CoRoT LRa02_E2_0121, which was initially classified as a Neptune-size transiting-planet candidate on a relatively wide orbit of 36.3 days. Follow-up observations were performed with UVES, Sandiford, SOPHIE and HARPS. T hese observations revealed a faint companion in the spectra. To find the true nature of the system we derived the radial velocities of the faint companion using TODMOR - a two-dimensional correlation technique, applied to the SOPHIE spectra. Modeling the lightcurve with EBAS we discovered a secondary eclipse with a depth of ~0.07%, indicating a diluted eclipsing binary. Combined MCMC modeling of the lightcurve and the radial velocities suggested that CoRoT LRa02_E2_0121 is a hierarchical triple system with an evolved G-type primary and an A-type:F-type grazing eclipsing binary. Such triple systems are difficult to discover.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا