ﻻ يوجد ملخص باللغة العربية
Metric learning involves learning a discriminative representation such that embeddings of similar classes are encouraged to be close, while embeddings of dissimilar classes are pushed far apart. State-of-the-art methods focus mostly on sophisticated loss functions or mining strategies. On the one hand, metric learning losses consider two or more examples at a time. On the other hand, modern data augmentation methods for classification consider two or more examples at a time. The combination of the two ideas is under-studied. In this work, we aim to bridge this gap and improve representations using mixup, which is a powerful data augmentation approach interpolating two or more examples and corresponding target labels at a time. This task is challenging because, unlike classification, the loss functions used in metric learning are not additive over examples, so the idea of interpolating target labels is not straightforward. To the best of our knowledge, we are the first to investigate mixing examples and target labels for deep metric learning. We develop a generalized formulation that encompasses existing metric learning loss functions and modify it to accommodate for mixup, introducing Metric Mix, or Metrix. We show that mixing inputs, intermediate representations or embeddings along with target labels significantly improves representations and outperforms state-of-the-art metric learning methods on four benchmark datasets.
K2-146 is a cool, 0.358 M_sun dwarf that was found to host a mini-Neptune with a 2.67-days period. The planet exhibited strong transit timing variations (TTVs) of greater than 30 minutes, indicative of the presence of a further object in the system.
Recent studies have revealed that neural network-based policies can be easily fooled by adversarial examples. However, while most prior works analyze the effects of perturbing every pixel of every frame assuming white-box policy access, in this paper
We describe our system for SemEval-2020 Task 11 on Detection of Propaganda Techniques in News Articles. We developed ensemble models using RoBERTa-based neural architectures, additional CRF layers, transfer learning between the two subtasks, and adva
It has been widely recognized that adversarial examples can be easily crafted to fool deep networks, which mainly root from the locally non-linear behavior nearby input examples. Applying mixup in training provides an effective mechanism to improve g
Distance Metric Learning (DML) seeks to learn a discriminative embedding where similar examples are closer, and dissimilar examples are apart. In this paper, we address the problem of Semi-Supervised DML (SSDML) that tries to learn a metric using a f