ﻻ يوجد ملخص باللغة العربية
We show that low-density random quotients of cubulated hyperbolic groups are again cubulated (and hyperbolic). Ingredients of the proof include cubical small-cancellation theory, the exponential growth of conjugacy classes, and the statement that hyperplane stabilizers grow exponentially more slowly than the ambient cubical group.
We give a conjectural classification of virtually cocompactly cubulated Artin-Tits groups (i.e. having a finite index subgroup acting geometrically on a CAT(0) cube complex), which we prove for all Artin-Tits groups of spherical type, FC type or two-
Let $G$ be either a non-elementary (word) hyperbolic group or a large group (both in the sense of Gromov). In this paper we describe several approaches for constructing continuous families of periodic quotients of $G$ with various properties. The f
Let $C(Gamma)$ be the set of isomorphism classes of the finite groups that are homomorphic images of $Gamma$. We investigate the extent to which $C(Gamma)$ determines $Gamma$ when $Gamma$ is a group of geometric interest. If $Gamma_1$ is a lattice in
We show that Out(G) is residually finite if G is a one-ended group that is hyperbolic relative to virtually polycyclic subgroups. More generally, if G is one-ended and hyperbolic relative to proper residually finite subgroups, the group of outer auto
We prove that for a one-ended hyperbolic graph $X$, the size of the quotient $X/G$ by a group $G$ acting freely and cocompactly bounds from below the number of simplices in an Eilenberg-MacLane space for $G$. We apply this theorem to show that one-en