ترغب بنشر مسار تعليمي؟ اضغط هنا

Giving Commands to a Self-Driving Car: How to Deal with Uncertain Situations?

100   0   0.0 ( 0 )
 نشر من قبل Thierry Deruyttere
 تاريخ النشر 2021
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Current technology for autonomous cars primarily focuses on getting the passenger from point A to B. Nevertheless, it has been shown that passengers are afraid of taking a ride in self-driving cars. One way to alleviate this problem is by allowing the passenger to give natural language commands to the car. However, the car can misunderstand the issued command or the visual surroundings which could lead to uncertain situations. It is desirable that the self-driving car detects these situations and interacts with the passenger to solve them. This paper proposes a model that detects uncertain situations when a command is given and finds the visual objects causing it. Optionally, a question generated by the system describing the uncertain objects is included. We argue that if the car could explain the objects in a human-like way, passengers could gain more confidence in the cars abilities. Thus, we investigate how to (1) detect uncertain situations and their underlying causes, and (2) how to generate clarifying questions for the passenger. When evaluating on the Talk2Car dataset, we show that the proposed model, acrfull{pipeline}, improves gls{m:ambiguous-absolute-increase} in terms of $IoU_{.5}$ compared to not using gls{pipeline}. Furthermore, we designed a referring expression generator (REG) acrfull{reg_model} tailored to a self-driving car setting which yields a relative improvement of gls{m:meteor-relative} METEOR and gls{m:rouge-relative} ROUGE-l compared with state-of-the-art REG models, and is three times faster.



قيم البحث

اقرأ أيضاً

A long-term goal of artificial intelligence is to have an agent execute commands communicated through natural language. In many cases the commands are grounded in a visual environment shared by the human who gives the command and the agent. Execution of the command then requires mapping the command into the physical visual space, after which the appropriate action can be taken. In this paper we consider the former. Or more specifically, we consider the problem in an autonomous driving setting, where a passenger requests an action that can be associated with an object found in a street scene. Our work presents the Talk2Car dataset, which is the first object referral dataset that contains commands written in natural language for self-driving cars. We provide a detailed comparison with related datasets such as ReferIt, RefCOCO, RefCOCO+, RefCOCOg, Cityscape-Ref and CLEVR-Ref. Additionally, we include a performance analysis using strong state-of-the-art models. The results show that the proposed object referral task is a challenging one for which the models show promising results but still require additional research in natural language processing, computer vision and the intersection of these fields. The dataset can be found on our website: http://macchina-ai.eu/
The current public sense of anxiety in dealing with disinformation as manifested by so-called fake news is acutely displayed by the reaction to recent events prompted by a belief in conspiracies among certain groups. A model to deal with disinformati on is proposed; it is based on a demonstration of the analogous behavior of disinformation to that of wave phenomena. Two criteria form the basis to combat the deleterious effects of disinformation: the use of a refractive medium based on skepticism as the default mode, and polarization as a filter mechanism to analyze its merits based on evidence. Critical thinking is enhanced since the first one tackles the pernicious effect of the confirmation bias, and the second the tendency towards attribution, both of which undermine our efforts to think and act rationally. The benefits of such a strategy include an epistemic reformulation of disinformation as an independently existing phenomenon, that removes its negative connotations when perceived as being possessed by groups or individuals.
Suspicious behavior is likely to threaten security, assets, life, or freedom. This behavior has no particular pattern, which complicates the tasks to detect it and define it. Even for human observers, it is complex to spot suspicious behavior in surv eillance videos. Some proposals to tackle abnormal and suspicious behavior-related problems are available in the literature. However, they usually suffer from high false-positive rates due to different classes with high visual similarity. The Pre-Crime Behavior method removes information related to a crime commission to focus on suspicious behavior before the crime happens. The resulting samples from different types of crime have a high-visual similarity with normal-behavior samples. To address this problem, we implemented 3D Convolutional Neural Networks and trained them under different approaches. Also, we tested different values in the number-of-filter parameter to optimize computational resources. Finally, the comparison between the performance using different training approaches shows the best option to improve the suspicious behavior detection on surveillance videos.
Much of human dialogue occurs in semi-cooperative settings, where agents with different goals attempt to agree on common decisions. Negotiations require complex communication and reasoning skills, but success is easy to measure, making this an intere sting task for AI. We gather a large dataset of human-human negotiations on a multi-issue bargaining task, where agents who cannot observe each others reward functions must reach an agreement (or a deal) via natural language dialogue. For the first time, we show it is possible to train end-to-end models for negotiation, which must learn both linguistic and reasoning skills with no annotated dialogue states. We also introduce dialogue rollouts, in which the model plans ahead by simulating possible complete continuations of the conversation, and find that this technique dramatically improves performance. Our code and dataset are publicly available (https://github.com/facebookresearch/end-to-end-negotiator).
Statistical hypothesis testing serves as statistical evidence for scientific innovation. However, if the reported results are intentionally biased, hypothesis testing no longer controls the rate of false discovery. In particular, we study such select ion bias in machine learning models where the reporter is motivated to promote an algorithmic innovation. When the number of possible configurations (e.g., datasets) is large, we show that the reporter can falsely report an innovation even if there is no improvement at all. We propose a `post-reporting solution to this issue where the bias of the reported results is verified by another set of results. The theoretical findings are supported by experimental results with synthetic and real-world datasets.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا