ترغب بنشر مسار تعليمي؟ اضغط هنا

Large eddy simulation of a supersonic lifted hydrogen flame with sparse-Lagrangian multiple mapping conditioning approach

145   0   0.0 ( 0 )
 نشر من قبل Huangwei Zhang
 تاريخ النشر 2021
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The Multiple Mapping Conditioning / Large Eddy Simulation (MMC-LES) approach is used to simulate a supersonic lifted hydrogen jet flame, which features shock-induced autoignition, shock-flame interaction, lifted flame stabilization, and finite-rate chemistry effects. The shocks and expansion waves, shock-reaction interactions and overall flame characteristics are accurately reproduced by the model. Predictions are compared with the detailed experimental data for the mean axial velocity, mean and root-mean-square temperature, species mole fractions, and mixture fraction at various locations. The predicted and experimentally observed flame structures are compared through scatter plots of species mole fractions and temperature against mixture fraction. Unlike most past MMC-LES which has been applied to low-Mach flames, in this supersonic flame case pressure work and viscous heating are included in the stochastic FDF equations. Analysis indicates that the pressure work plays an important role in autoignition induction and flame stabilization, whereas viscous heating is only significant in shear layers (but still negligibly small compared to the pressure work). The evolutions of particle information subject to local gas dynamics are extracted through trajectory analysis on representative fuel and oxidizer particles. The particles intermittently enter the extinction region and may be deviated from the full burning or mixing lines under the effects of shocks, expansion waves and viscous heating. The chemical explosive mode analysis performed on the Lagrangian particles shows that temperature, the H and OH radicals contribute dominantly to CEM respectively in the central fuel jet, fuel-rich and fuel-lean sides. The pronounced particle Damkohler numbers first occur in the fuel jet / coflow shear layer, enhanced at the first shock intersection point and peak around the flame stabilization point.



قيم البحث

اقرأ أيضاً

We have performed Coherent-vorticity Preserving Large-Eddy simulations of a trefoil knot-shaped vortex, inspired by the experiments of Kleckner and Irvine. The flow parameter space is extended in the present study, including variations of the circula tion Reynolds numbers in the range Re = 2000 - 200000, where Re = 20000 is the value used in the experiments. The vortex line corresponding to the trefoil knot is defined using a parametric equation and the Biot-Savart law is employed to initialize the velocity field. The CvP LES computation displays a good qualitative match with the experiment. In particular, the vortex entanglement process is accurately represented as well as the subsequent separation of the main vortex in two distinct structures - a small and a large vortex - with different self-advection speeds that have been quantified. The small vortex propagates faster than the large oscillatory vortex which carries an important amount of vorticity. The advection velocity of the vortex before bursting is found to be independent of the Reynolds number. The low Reynolds number computation leads to a decrease of the separated vortices velocity after bursting, compared to the higher Reynolds computations. The computation of energy spectra emphasizes intense energy transfers from large to small scales during the bursting process. The evolution of volume-averaged enstrophy shows that the bursting leads to the creation of small scales that are sustained a long time in the flow, when a sufficiently large Reynolds number is considered (Re>20000). The low Reynolds number case Re = 2000 hinders the generation of small scales during the bursting process and yields essentially laminar dynamics. The onset of background turbulence due to the entanglement process can be observed at Re = 200000
We present a high-order implicit large-eddy simulation (ILES) approach for simulating transitional turbulent flows. The approach consists of an Interior Embedded Discontinuous Galerkin (IEDG) method for the discretization of the compressible Navier-S tokes equations and a parallel preconditioned Newton-GMRES solver for the resulting nonlinear system of equations. The IEDG method arises from the marriage of the Embedded Discontinuous Galerkin (EDG) method and the Hybridizable Discontinuous Galerkin (HDG) method. As such, the IEDG method inherits the advantages of both the EDG method and the HDG method to make itself well-suited for turbulence simulations. We propose a minimal residual Newton algorithm for solving the nonlinear system arising from the IEDG discretization of the Navier-Stokes equations. The preconditioned GMRES algorithm is based on a restricted additive Schwarz (RAS) preconditioner in conjunction with a block incomplete LU factorization at the subdomain level. The proposed approach is applied to the ILES of transitional turbulent flows over a NACA 65-(18)10 compressor cascade at Reynolds number 250,000 in both design and off-design conditions. The high-order ILES results show good agreement with a subgrid-scale LES model discretized with a second-order finite volume code while using significantly less degrees of freedom. This work shows that high-order accuracy is key for predicting transitional turbulent flows without a SGS model.
142 - Bo Liu , Huiyang Yu , Haibo Huang 2021
A nonlocal subgrid-scale stress (SGS) model is developed based on the convolution neural network (CNN), a powerful supervised data-driven approach. The CNN is an ideal approach to naturally consider nonlocal spatial information in prediction due to i ts wide receptive field. The CNN-based models used here only take primitive flow variables as input, then the flow features are automatically extracted without any $priori$ guidance. The nonlocal models trained by direct numerical simulation (DNS) data of a turbulent channel flow at $Re_{tau}=178$ are accessed in both the $priori$ and $posteriori$ test, providing physically reasonable flow statistics (like mean velocity and velocity fluctuations) closing to the DNS results even when extrapolating to a higher Reynolds number $Re_{tau}=600$. In our model, the backscatter is also predicted well and the numerical simulation is stable. The nonlocal models outperform local data-driven models like artificial neural network and some SGS models, e.g. the Smagorinsky model in actual large eddy simulation (LES). The model is also robust since stable solutions can be obtained when examining the grid resolution from one-half to double of the spatial resolution used in training. We also investigate the influence of receptive fields and suggest using the two-point correlation analysis as a quantitative method to guide the design of nonlocal physical models. To facilitate the combination of machine learning (ML) algorithms to computational fluid dynamics (CFD), a novel heterogeneous ML-CFD framework is proposed. The present study provides the effective data-driven nonlocal methods for SGS modelling in the LES of complex anisotropic turbulent flows.
Cloud cavitation is related to an intrinsic instability where clouds are shed periodically. The shedding process is initiated either by the motion of a liquid re-entrant jet or a condensation shock. Cloud cavitation in nozzles interacts with the flow field in the nozzle, the mass flow and the spray break-up, and causes erosion damage. For nozzle geometries cloud shedding and the associated processes have not yet been studied in detail. In this paper, we investigate the process of cloud cavitation shedding, the re-entrant jet and condensation shocks in a scaled-up generic step nozzle with injection into gas using implicit Large-Eddy Simulations (LES). For modeling of the cavitating liquid we employ a barotropic equilibrium cavitation model, embedded in a homogeneous multi-component mixture model. Full compressibility of all components is taken into account to resolve the effects of collapsing vapor structures. We carry out simulations of two operating points exhibiting different cavitation regimes. The time-resolved, three-dimensional simulation results cover several shedding cycles and provide deeper insight into the flow field. Our results show that at lower cavitation numbers, shedding is initiated by condensation shocks, which has not yet been reported for nozzle flows with a constant cross-section. We analyze the cavitation dynamics and the shedding cycles of both operating points. Based on our observations we propose modifications to established schematics of the cloud shedding process. Additionally, we analyze the near-wall upstream flow in and underneath the vapor sheet and possible driving mechanism behind the formation of the re-entrant jet.
93 - Han Qi , Xinliang Li , Hao Zhou 2019
A new methodology based on energy flux similarity is suggested in this paper for large eddy simulation (LES) of transitional and turbulent flows. Existing knowledge reveals that the energy cascade generally exists in transitional and turbulent flows with different distributions, and the characteristic quantity of scale interaction in energy cascade processes is energy flux. Therefore, energy flux similarity is selected as the basic criterion to secure the flow field getting from LES highly similar to the real flow field. Through a priori tests, we find that the energy flux from the tensor-diffusivity (TD) model has high similarity with the real energy flux. Then, we modify the modelled energy flux from the TD model and obtain uniform formulas of energy flux similarity corresponding to different filter widths and locations in the wall-bounded turbulence. To secure the robustness of simulation and the LES results similar to the real flow, we apply the energy flux similarity method (EFSM) to the Smagorinsky model in the LES of compressible turbulent channel flow, compressible flat-plate flow, and flow over a compressible ramp. The a posteriori tests show that, overall, EFSM can better predict these flows than other subgrid-scale models. In the simulation of turbulent channel flow, EFSM can accurately predict the mean stream-wise velocity, Reynolds stress, and affluent coherent structures. In LES of compressible flat-plate flow, EFSM could provide accurate simulation results of the onset of transition and transition peak, skin friction, and mean stream-wise velocity in cases with three different grid scales. Meanwhile, for flow over a compressible ramp, EFSM could correctly describe the process of bypass transition, locations of separation and reattachment in the corner region, and abundant coherent vortex structures, etc.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا