ﻻ يوجد ملخص باللغة العربية
While language identification is a fundamental speech and language processing task, for many languages and language families it remains a challenging task. For many low-resource and endangered languages this is in part due to resource availability: where larger datasets exist, they may be single-speaker or have different domains than desired application scenarios, demanding a need for domain and speaker-invariant language identification systems. This years shared task on robust spoken language identification sought to investigate just this scenario: systems were to be trained on largely single-speaker speech from one domain, but evaluated on data in other domains recorded from speakers under different recording circumstances, mimicking realistic low-resource scenarios. We see that domain and speaker mismatch proves very challenging for current methods which can perform above 95% accuracy in-domain, which domain adaptation can address to some degree, but that these conditions merit further investigation to make spoken language identification accessible in many scenarios.
In this paper, we address the task of spoken language understanding. We present a method for translating spoken sentences from one language into spoken sentences in another language. Given spectrogram-spectrogram pairs, our model can be trained compl
Typological knowledge bases (KBs) such as WALS (Dryer and Haspelmath, 2013) contain information about linguistic properties of the worlds languages. They have been shown to be useful for downstream applications, including cross-lingual transfer learn
End-to-end (E2E) spoken language understanding (SLU) can infer semantics directly from speech signal without cascading an automatic speech recognizer (ASR) with a natural language understanding (NLU) module. However, paired utterance recordings and c
Language understanding in speech-based systems have attracted much attention in recent years with the growing demand for voice interface applications. However, the robustness of natural language understanding (NLU) systems to errors introduced by aut
Spoken dialogue systems such as Siri and Alexa provide great convenience to peoples everyday life. However, current spoken language understanding (SLU) pipelines largely depend on automatic speech recognition (ASR) modules, which require a large amou