ﻻ يوجد ملخص باللغة العربية
By fibering the duality between the $E_{8}times E_{8}$ heterotic string on $T^{3}$ and M-theory on K3, we study heterotic duals of M-theory compactified on $G_{2}$ orbifolds of the form $T^{7}/mathbb{Z}_{2}^{3}$. While the heterotic compactification space is straightforward, the description of the gauge bundle is subtle, involving the physics of point-like instantons on orbifold singularities. By comparing the gauge groups of the dual theories, we deduce behavior of a half-$G_{2}$ limit, which is the M-theory analog of the stable degeneration limit of F-theory. The heterotic backgrounds exhibit point-like instantons that are localized on pairs of orbifold loci, similar to the gauge-locking phenomenon seen in Hov{r}ava-Witten compactifications. In this way, the geometry of the $G_{2}$ orbifold is translated to bundle data in the heterotic background. While the instanton configuration looks surprising from the perspective of the $E_{8}times E_{8}$ heterotic string, it may be understood as T-dual $text{Spin}(32)/mathbb{Z}_{2}$ instantons along with winding shifts originating in a dual Type I compactification.
We present calculation of the anomaly cancellation in M-theory on orbifolds $S^1/Z_2$ and $T^5/Z_2$ in the upstairs approach. The main requirement that allows one to uniquely define solutions to the modified Bianchi identities in this case is that th
We reconsider the ingredients of moduli stabilization in heterotic M-theory. On this line we close a gap in the literature deriving the Kaehler potential dependence on vector bundle moduli and charged matter. Crucial in this derivation is our supersp
Recently spatially localized anomalies have been considered in higher dimensional field theories. The question of the quantum consistency and stability of these theories needs further discussion. Here we would like to investigate what string theory m
We study orbifolds by permutations of two identical N=2 minimal models within the Gepner construction of four dimensional heterotic strings. This is done using the new N=2 supersymmetric permutation orbifold building blocks we have recently developed
We study heterotic asymmetric orbifold models. By utilizing the lattice engineering technique, we classify (22,6)-dimensional Narain lattices with right-moving non-Abelian group factors which can be starting points for Z3 asymmetric orbifold construc