ترغب بنشر مسار تعليمي؟ اضغط هنا

Refiner: Refining Self-attention for Vision Transformers

97   0   0.0 ( 0 )
 نشر من قبل Zhou Daquan
 تاريخ النشر 2021
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Vision Transformers (ViTs) have shown competitive accuracy in image classification tasks compared with CNNs. Yet, they generally require much more data for model pre-training. Most of recent works thus are dedicated to designing more complex architectures or training methods to address the data-efficiency issue of ViTs. However, few of them explore improving the self-attention mechanism, a key factor distinguishing ViTs from CNNs. Different from existing works, we introduce a conceptually simple scheme, called refiner, to directly refine the self-attention maps of ViTs. Specifically, refiner explores attention expansion that projects the multi-head attention maps to a higher-dimensional space to promote their diversity. Further, refiner applies convolutions to augment local patterns of the attention maps, which we show is equivalent to a distributed local attention features are aggregated locally with learnable kernels and then globally aggregated with self-attention. Extensive experiments demonstrate that refiner works surprisingly well. Significantly, it enables ViTs to achieve 86% top-1 classification accuracy on ImageNet with only 81M parameters.



قيم البحث

اقرأ أيضاً

Transformers have demonstrated great potential in computer vision tasks. To avoid dense computations of self-attentions in high-resolution visual data, some recent Transformer models adopt a hierarchical design, where self-attentions are only compute d within local windows. This design significantly improves the efficiency but lacks global feature reasoning in early stages. In this work, we design a multi-path structure of the Transformer, which enables local-to-global reasoning at multiple granularities in each stage. The proposed framework is computationally efficient and highly effective. With a marginal increasement in computational overhead, our model achieves notable improvements in both image classification and semantic segmentation. Code is available at https://github.com/ljpadam/LG-Transformer
Recently, Vision Transformer and its variants have shown great promise on various computer vision tasks. The ability of capturing short- and long-range visual dependencies through self-attention is arguably the main source for the success. But it als o brings challenges due to quadratic computational overhead, especially for the high-resolution vision tasks (e.g., object detection). In this paper, we present focal self-attention, a new mechanism that incorporates both fine-grained local and coarse-grained global interactions. Using this new mechanism, each token attends the closest surrounding tokens at fine granularity but the tokens far away at coarse granularity, and thus can capture both short- and long-range visual dependencies efficiently and effectively. With focal self-attention, we propose a new variant of Vision Transformer models, called Focal Transformer, which achieves superior performance over the state-of-the-art vision Transformers on a range of public image classification and object detection benchmarks. In particular, our Focal Transformer models with a moderate size of 51.1M and a larger size of 89.8M achieve 83.5 and 83.8 Top-1 accuracy, respectively, on ImageNet classification at 224x224 resolution. Using Focal Transformers as the backbones, we obtain consistent and substantial improvements over the current state-of-the-art Swin Transformers for 6 different object detection methods trained with standard 1x and 3x schedules. Our largest Focal Transformer yields 58.7/58.9 box mAPs and 50.9/51.3 mask mAPs on COCO mini-val/test-dev, and 55.4 mIoU on ADE20K for semantic segmentation, creating new SoTA on three of the most challenging computer vision tasks.
Vision transformer (ViT) has recently showed its strong capability in achieving comparable results to convolutional neural networks (CNNs) on image classification. However, vanilla ViT simply inherits the same architecture from the natural language p rocessing directly, which is often not optimized for vision applications. Motivated by this, in this paper, we propose a new architecture that adopts the pyramid structure and employ a novel regional-to-local attention rather than global self-attention in vision transformers. More specifically, our model first generates regional tokens and local tokens from an image with different patch sizes, where each regional token is associated with a set of local tokens based on the spatial location. The regional-to-local attention includes two steps: first, the regional self-attention extract global information among all regional tokens and then the local self-attention exchanges the information among one regional token and the associated local tokens via self-attention. Therefore, even though local self-attention confines the scope in a local region but it can still receive global information. Extensive experiments on three vision tasks, including image classification, object detection and action recognition, show that our approach outperforms or is on par with state-of-the-art ViT variants including many concurrent works. Our source codes and models will be publicly available.
This paper investigates two techniques for developing efficient self-supervised vision transformers (EsViT) for visual representation learning. First, we show through a comprehensive empirical study that multi-stage architectures with sparse self-att entions can significantly reduce modeling complexity but with a cost of losing the ability to capture fine-grained correspondences between image regions. Second, we propose a new pre-training task of region matching which allows the model to capture fine-grained region dependencies and as a result significantly improves the quality of the learned vision representations. Our results show that combining the two techniques, EsViT achieves 81.3% top-1 on the ImageNet linear probe evaluation, outperforming prior arts with around an order magnitude of higher throughput. When transferring to downstream linear classification tasks, EsViT outperforms its supervised counterpart on 17 out of 18 datasets. The code and models will be publicly available.
In this paper, we question if self-supervised learning provides new properties to Vision Transformer (ViT) that stand out compared to convolutional networks (convnets). Beyond the fact that adapting self-supervised methods to this architecture works particularly well, we make the following observations: first, self-supervised ViT features contain explicit information about the semantic segmentation of an image, which does not emerge as clearly with supervised ViTs, nor with convnets. Second, these features are also excellent k-NN classifiers, reaching 78.3% top-1 on ImageNet with a small ViT. Our study also underlines the importance of momentum encoder, multi-crop training, and the use of small patches with ViTs. We implement our findings into a simple self-supervised method, called DINO, which we interpret as a form of self-distillation with no labels. We show the synergy between DINO and ViTs by achieving 80.1% top-1 on ImageNet in linear evaluation with ViT-Base.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا