ترغب بنشر مسار تعليمي؟ اضغط هنا

optimizing the searches for interstellar heterocycles

89   0   0.0 ( 0 )
 نشر من قبل Emmanuel Etim
 تاريخ النشر 2021
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

It is a fact that interstellar formation processes are thermodynamically affected. Based on this, the seven heterocycles; imidazole, pyridine, pyrimidine, pyrrole, quinoline, isoquinoline and furan that have been searched for from different astronomical sources with only upper limits of their column density determined without any successful detection remain the best candidates for astronomical observation with respect to their isomers. These molecules are believed to be formed on the surface of the interstellar dust grains and as such, they are susceptible to interstellar hydrogen bonding. In this study, a two way approach using ab initio quantum chemical simulations is considered in optimizing the searches for these molecules in interstellar medium. Firstly, these molecules and their isomers are subjected to the effect of interstellar hydrogen bonding. Secondly, the deuterated analogues of these heterocycles are examined for their possible detectability. From the results, all the heterocycles except furan are found to be strongly bonded to the surfaces of the interstellar dust grains thereby reducing their abundances, thus contributing to their unsuccessful detection. Successful detection of furan remains highly feasible. With respect to their D-analogues, the computed Boltzmann factor indicates that they are formed under the dense molecular cloud conditions where major deuterium fractionation dominates implying very high D/H ratio above the cosmic D/H ratio which suggests the detectability of these deuterated species.



قيم البحث

اقرأ أيضاً

A long standing problem in astrochemistry is the inability of many current models to account for missing sulfur content. Many relatively simple species that may be good candidates to sequester sulfur have not been measured experimentally at the high spectral resolution necessary to enable radioastronomical identification. On the basis of new laboratory data, we report searches for the rotational lines in the microwave, millimeter, and sub-millimeter regions of the sulfur-containing hydrocarbon HCCSH. This simple species would appear to be a promising candidate for detection in space owing to the large dipole moment along its $b$-inertial axis, and because the bimolecular reaction between two highly abundant astronomical fragments (CCH and SH radicals) may be rapid. An inspection of multiple line surveys from the centimeter to the far-infrared toward a range of sources from dark clouds to high-mass star-forming regions, however, resulted in non-detections. An analogous search for the lowest-energy isomer, H$_2$CCS, is presented for comparison, and also resulted in non-detections. Typical upper limits on the abundance of both species relative to hydrogen are $10^{-9}$-$10^{-10}$. We thus conclude that neither isomer is a major reservoir of interstellar sulfur in the range of environments studied. Both species may still be viable candidates for detection in other environments or at higher frequencies, providing laboratory frequencies are available.
With the detection of a binary neutron star system and its corresponding electromagnetic counterparts, a new window of transient astronomy has opened. Due to the size of the error regions, which can span hundreds to thousands of square degrees, there are significant benefits to optimizing tilings for these large sky areas. The rich science promised by gravitational-wave astronomy has led to the proposal for a variety of tiling and time allocation schemes, and for the first time, we make a systematic comparison of some of these methods. We find that differences of a factor of 2 or more in efficiency are possible, depending on the algorithm employed. For this reason, for future surveys searching for electromagnetic counterparts, care should be taken when selecting tiling, time allocation, and scheduling algorithms to maximize the probability of counterpart detection.
The physics potential of EDELWEISS detectors for the search of low-mass Weakly Interacting Massive Particles (WIMPs) is studied. Using a data-driven background model, projected exclusion limits are computed using frequentist and multivariate analysis approaches, namely profile likelihood and boosted decision tree. Both current and achievable experimental performance are considered. The optimal strategy for detector optimization depends critically on whether the emphasis is put on WIMP masses below or above $sim$ 5 GeV/c$^2$. The projected sensitivity for the next phase of the EDELWEISS-III experiment at the Modane Underground Laboratory (LSM) for low-mass WIMP search is presented. By 2018 an upper limit on the spin-independent WIMP-nucleon cross-section of $sigma_{SI} = 7 times 10^{-42}$ cm$^2$ is expected for a WIMP mass in the range 2$-$5 GeV/c$^2$. The requirements for a future hundred-kilogram scale experiment designed to reach the bounds imposed by the coherent scattering of solar neutrinos are also described. By improving the ionization resolution down to 50 eV$_{ee}$, we show that such an experiment installed in an even lower background environment (e.g. at SNOLAB) should allow to observe about 80 $^8$B neutrino events after discrimination.
Chemical models used to study the chemical composition of the gas and the ices in the interstellar medium are based on a network of chemical reactions and associated rate coefficients. These reactions and rate coefficients are partially compiled from data in the literature, when available. We present in this paper kida.uva.2014, a new updated version of the kida.uva public gas-phase network first released in 2012. In addition to a description of the many specific updates, we illustrate changes in the predicted abundances of molecules for cold dense cloud conditions as compared with the results of the previous version of our network, kida.uva.2011.
99 - David Neufeld 2017
We report the results of a sensitive search for the 443.952902 GHz $J=1-0$ transition of the LiH molecule toward two interstellar clouds in the Milky Way, W49N and Sgr B2 (Main), that has been carried out using the Atacama Pathfinder Experiment (APEX ) telescope. The results obtained toward W49N place an upper limit of $1.9 times 10^{-11}, (3sigma)$ on the LiH abundance, $N({rm LiH})/N({rm H}_2)$, in a foreground, diffuse molecular cloud along the sight-line to W49N, corresponding to 0.5% of the solar system lithium abundance. Those obtained toward Sgr B2 (Main) place an abundance limit $N({rm LiH})/N({rm H}_2) < 3.6 times 10^{-13} ,(3sigma)$ in the dense gas within the Sgr B2 cloud itself. These limits are considerably smaller that those implied by the tentative detection of LiH reported previously for the $z=0.685$ absorber toward B0218+357.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا