Braid group and $q$-Racah polynomials


الملخص بالإنكليزية

The irreducible representations of two intermediate Casimir elements associated to the recoupling of three identical irreducible representations of $U_q(mathfrak{sl}_2)$ are considered. It is shown that these intermediate Casimirs are related by a conjugation involving braid group representations. Consequently, the entries of the braid group matrices are explicitly given in terms of the $q$-Racah polynomials which appear as $6j$-symbols in the Racah problem for $U_q(mathfrak{sl}_2)$. Formulas for these polynomials are derived from the algebraic relations satisfied by the braid group representations.

تحميل البحث