ترغب بنشر مسار تعليمي؟ اضغط هنا

Tractable Regularization of Probabilistic Circuits

71   0   0.0 ( 0 )
 نشر من قبل Anji Liu
 تاريخ النشر 2021
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Probabilistic Circuits (PCs) are a promising avenue for probabilistic modeling. They combine advantages of probabilistic graphical models (PGMs) with those of neural networks (NNs). Crucially, however, they are tractable probabilistic models, supporting efficient and exact computation of many probabilistic inference queries, such as marginals and MAP. Further, since PCs are structured computation graphs, they can take advantage of deep-learning-style parameter updates, which greatly improves their scalability. However, this innovation also makes PCs prone to overfitting, which has been observed in many standard benchmarks. Despite the existence of abundant regularization techniques for both PGMs and NNs, they are not effective enough when applied to PCs. Instead, we re-think regularization for PCs and propose two intuitive techniques, data softening and entropy regularization, that both take advantage of PCs tractability and still have an efficient implementation as a computation graph. Specifically, data softening provides a principled way to add uncertainty in datasets in closed form, which implicitly regularizes PC parameters. To learn parameters from a softened dataset, PCs only need linear time by virtue of their tractability. In entropy regularization, the exact entropy of the distribution encoded by a PC can be regularized directly, which is again infeasible for most other density estimation models. We show that both methods consistently improve the generalization performance of a wide variety of PCs. Moreover, when paired with a simple PC structure, we achieved state-of-the-art results on 10 out of 20 standard discrete density estimation benchmarks.



قيم البحث

اقرأ أيضاً

Probabilistic circuits (PCs) are a promising avenue for probabilistic modeling, as they permit a wide range of exact and efficient inference routines. Recent ``deep-learning-style implementations of PCs strive for a better scalability, but are still difficult to train on real-world data, due to their sparsely connected computational graphs. In this paper, we propose Einsum Networks (EiNets), a novel implementation design for PCs, improving prior art in several regards. At their core, EiNets combine a large number of arithmetic operations in a single monolithic einsum-operation, leading to speedups and memory savings of up to two orders of magnitude, in comparison to previous implementations. As an algorithmic contribution, we show that the implementation of Expectation-Maximization (EM) can be simplified for PCs, by leveraging automatic differentiation. Furthermore, we demonstrate that EiNets scale well to datasets which were previously out of reach, such as SVHN and CelebA, and that they can be used as faithful generative image models.
Probabilistic circuits (PCs) represent a probability distribution as a computational graph. Enforcing structural properties on these graphs guarantees that several inference scenarios become tractable. Among these properties, structured decomposabili ty is a particularly appealing one: it enables the efficient and exact computations of the probability of complex logical formulas, and can be used to reason about the expected output of certain predictive models under missing data. This paper proposes Strudel, a simple, fast and accurate learning algorithm for structured-decomposable PCs. Compared to prior work for learning structured-decomposable PCs, Strudel delivers more accurate single PC models in fewer iterations, and dramatically scales learning when building ensembles of PCs. It achieves this scalability by exploiting another structural property of PCs, called determinism, and by sharing the same computational graph across mixture components. We show these advantages on standard density estimation benchmarks and challenging inference scenarios.
Generating functions, which are widely used in combinatorics and probability theory, encode function values into the coefficients of a polynomial. In this paper, we explore their use as a tractable probabilistic model, and propose probabilistic gener ating circuits (PGCs) for their efficient representation. PGCs are strictly more expressive efficient than many existing tractable probabilistic models, including determinantal point processes (DPPs), probabilistic circuits (PCs) such as sum-product networks, and tractable graphical models. We contend that PGCs are not just a theoretical framework that unifies vastly different existing models, but also show great potential in modeling realistic data. We exhibit a simple class of PGCs that are not trivially subsumed by simple combinations of PCs and DPPs, and obtain competitive performance on a suite of density estimation benchmarks. We also highlight PGCs connection to the theory of strongly Rayleigh distributions.
Probabilistic circuits (PCs) have become the de-facto standard for learning and inference in probabilistic modeling. We introduce Sum-Product-Attention Networks (SPAN), a new generative model that integrates probabilistic circuits with Transformers. SPAN uses self-attention to select the most relevant parts of a probabilistic circuit, here sum-product networks, to improve the modeling capability of the underlying sum-product network. We show that while modeling, SPAN focuses on a specific set of independent assumptions in every product layer of the sum-product network. Our empirical evaluations show that SPAN outperforms state-of-the-art probabilistic generative models on various benchmark data sets as well is an efficient generative image model.
Computing the expectation of kernel functions is a ubiquitous task in machine learning, with applications from classical support vector machines to exploiting kernel embeddings of distributions in probabilistic modeling, statistical inference, causal discovery, and deep learning. In all these scenarios, we tend to resort to Monte Carlo estimates as expectations of kernels are intractable in general. In this work, we characterize the conditions under which we can compute expected kernels exactly and efficiently, by leveraging recent advances in probabilistic circuit representations. We first construct a circuit representation for kernels and propose an approach to such tractable computation. We then demonstrate possible advancements for kernel embedding frameworks by exploiting tractable expected kernels to derive new algorithms for two challenging scenarios: 1) reasoning under missing data with kernel support vector regressors; 2) devising a collapsed black-box importance sampling scheme. Finally, we empirically evaluate both algorithms and show that they outperform standard baselines on a variety of datasets.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا