ترغب بنشر مسار تعليمي؟ اضغط هنا

Provably Secure Generative Linguistic Steganography

120   0   0.0 ( 0 )
 نشر من قبل Siyu Zhang
 تاريخ النشر 2021
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Generative linguistic steganography mainly utilized language models and applied steganographic sampling (stegosampling) to generate high-security steganographic text (stegotext). However, previous methods generally lead to statistical differences between the conditional probability distributions of stegotext and natural text, which brings about security risks. In this paper, to further ensure security, we present a novel provably secure generative linguistic steganographic method ADG, which recursively embeds secret information by Adaptive Dynamic Grouping of tokens according to their probability given by an off-the-shelf language model. We not only prove the security of ADG mathematically, but also conduct extensive experiments on three public corpora to further verify its imperceptibility. The experimental results reveal that the proposed method is able to generate stegotext with nearly perfect security.



قيم البحث

اقرأ أيضاً

Whereas traditional cryptography encrypts a secret message into an unintelligible form, steganography conceals that communication is taking place by encoding a secret message into a cover signal. Language is a particularly pragmatic cover signal due to its benign occurrence and independence from any one medium. Traditionally, linguistic steganography systems encode secret messages in existing text via synonym substitution or word order rearrangements. Advances in neural language models enable previously impractical generation-based techniques. We propose a steganography technique based on arithmetic coding with large-scale neural language models. We find that our approach can generate realistic looking cover sentences as evaluated by humans, while at the same time preserving security by matching the cover message distribution with the language model distribution.
Linguistic steganography studies how to hide secret messages in natural language cover texts. Traditional methods aim to transform a secret message into an innocent text via lexical substitution or syntactical modification. Recently, advances in neur al language models (LMs) enable us to directly generate cover text conditioned on the secret message. In this study, we present a new linguistic steganography method which encodes secret messages using self-adjusting arithmetic coding based on a neural language model. We formally analyze the statistical imperceptibility of this method and empirically show it outperforms the previous state-of-the-art methods on four datasets by 15.3% and 38.9% in terms of bits/word and KL metrics, respectively. Finally, human evaluations show that 51% of generated cover texts can indeed fool eavesdroppers.
146 - Zhuo Zhang , Jia Liu , Yan Ke 2018
In this paper, a novel data-driven information hiding scheme called generative steganography by sampling (GSS) is proposed. Unlike in traditional modification-based steganography, in our method the stego image is directly sampled by a powerful genera tor: no explicit cover is used. Both parties share a secret key used for message embedding and extraction. The Jensen-Shannon divergence is introduced as a new criterion for evaluating the security of generative steganography. Based on these principles, we propose a simple practical generative steganography method that uses semantic image inpainting. The message is written in advance to an uncorrupted region that needs to be retained in the corrupted image. Then, the corrupted image with the secret message is fed into a Generator trained by a generative adversarial network (GAN) for semantic completion. Message loss and prior loss terms are proposed for penalizing message extraction error and unrealistic stego image. In our design, we first train a generator whose training target is the generation of new data samples from the same distribution as that of existing training data. Next, for the trained generator, backpropagation to the message and prior loss are introduced to optimize the coding of the input noise data for the generator. The presented experiments demonstrate the potential of the proposed framework based on both qualitative and quantitative evaluations of the generated stego images.
105 - Haichao Shi , Jing Dong , Wei Wang 2017
In this paper, a novel strategy of Secure Steganograpy based on Generative Adversarial Networks is proposed to generate suitable and secure covers for steganography. The proposed architecture has one generative network, and two discriminative network s. The generative network mainly evaluates the visual quality of the generated images for steganography, and the discriminative networks are utilized to assess their suitableness for information hiding. Different from the existing work which adopts Deep Convolutional Generative Adversarial Networks, we utilize another form of generative adversarial networks. By using this new form of generative adversarial networks, significant improvements are made on the convergence speed, the training stability and the image quality. Furthermore, a sophisticated steganalysis network is reconstructed for the discriminative network, and the network can better evaluate the performance of the generated images. Numerous experiments are conducted on the publicly available datasets to demonstrate the effectiveness and robustness of the proposed method.
330 - Qin Li , Chengqing Li , Chunhui Wu 2020
In this paper, an efficient arbitrated quantum signature scheme is proposed by combining quantum cryptographic techniques and some ideas in classical cryptography. In the presented scheme, the signatory and the receiver can share a long-term secret k ey with the arbitrator by utilizing the key together with a random number. While in previous quantum signature schemes, the key shared between the signatory and the arbitrator or between the receiver and the arbitrator could be used only once, and thus each time when a signatory needs to sign, the signatory and the receiver have to obtain a new key shared with the arbitrator through a quantum key distribution protocol. Detailed theoretical analysis shows that the proposed scheme is efficient and provably secure.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا