ﻻ يوجد ملخص باللغة العربية
Hybrid photonic-plasmonic cavities have emerged as a new platform to increase light-matter interaction capable to enhance the Purcell factor in a singular way not attainable with either photonic or plasmonic cavities separately. In the hybrid cavities proposed so far, mainly consisting of metallic bow-tie antennas, the plasmonic gap sizes defined by lithography in a repeatable way are limited to minimum values approx 10 nm. Nanoparticle-on-a-mirror (NPoM) cavities are far superior to achieve the smallest possible mode volumes, as gaps smaller than 1 nm can be created. Here, we design a hybrid cavity that combines a NPoM plasmonic cavity and a dielectric-nanobeam photonic crystal cavity operating at transverse-magnetic (TM) polarization. The metallic nanoparticle can be placed very close (< 1 nm) to the upper surface of the dielectric cavity, which acts as a low-reflectivity mirror. We demonstrate through numerical calculations that this kind of hybrid plasmonic-photonic cavity architecture exhibits quality factors, Q, above 10^{3} and normalized mode volumes, V , down to 10^{ um{-3}}, thus resulting in high Purcell factors (FP approx 10^5), whilst being experimentally feasible with current technology. Our results suggest that hybrid cavities with sub-nm gaps should open new avenues for boosting light-matter interaction in nanophotonic systems.
Immense field enhancement and nanoscale confinement of light are possible within nanoparticle-on-mirror (NPoM) plasmonic resonators, which enable novel optically-activated physical and chemical phenomena, and render these nanocavities greatly sensiti
We design a polarization-sensitive resonator for use in midinfrared photodetectors, utilizing a photonic crystal cavity and a single or double-metal plasmonic waveguide to achieve enhanced detector efficiency due to superior optical confinement withi
In a recent investigation, we studied two-dimensional point-defected photonic bandgap cavities composed of dielectric rods arranged according to various representative periodic and aperiodic lattices, with special emphasis on possible applications to
Hybrid plasmonic photonic structures combine the plasmonic response with the photonic band gap, holding promise for utilization as optical switches and sensors. Here, we demonstrate the active modulation of the optical response in such structures wit
The geometric phase and topological property for one-dimensional hybrid plasmonic-photonic crystals consisting of a simple lattice of graphene sheets are investigated systematically. For transverse magnetic waves, both plasmonic and photonic modes ex