ﻻ يوجد ملخص باللغة العربية
Intelligent reflecting surfaces (IRSs) can be beneficial to both information and energy transfer, due to the gains achieved by their multiple elements. In this work, we deal with the impact of spatial correlation between the IRS elements, in the context of simultaneous wireless information and power transfer. The performance is evaluated in terms of the average harvested energy and the outage probability for random and equal phase shifts. Closed-form analytical expressions for both metrics under spatial correlation are derived. Moreover, the optimal case is considered when the elements are uncorrelated and fully correlated. In the uncorrelated case, random and equal phase shifts provide the same performance. However, the performance of correlated elements attains significant gains when there are equal phase shifts. Finally, we show that correlation is always beneficial to energy transfer, whereas it is a degrading factor for information transfer under random and optimal configurations.
Intelligent reflecting surface (IRS)-assisted wireless communication is widely deemed a key technology for 6G systems. The main challenge in deploying an IRS-aided terahertz (THz) link, though, is the severe propagation losses at high frequency bands
This paper studies the feasibility of deploying intelligent reflecting surfaces (IRSs) in massive MIMO (multiple-input multiple-output) systems to improve the performance of users in the service dead zone. To reduce the channel training overhead, we
This paper considers an intelligent reflecting sur-face (IRS)-aided simultaneous wireless information and power transfer (SWIPT) network, where multiple users decode data and harvest energy from the transmitted signal of a transmit-ter. The proposed
We introduce a novel system setup where a backscatter device operates in the presence of an intelligent reflecting surface (IRS). In particular, we study the bistatic backscatter communication (BackCom) system assisted by an IRS. The phase shifts at
In a practical massive MIMO (multiple-input multiple-output) system, the number of antennas at a base station (BS) is constrained by the space and cost factors, which limits the throughput gain promised by theoretical analysis. This paper thus studie