ﻻ يوجد ملخص باللغة العربية
We revisit the electromagnetic form factors of the proton and neutron in the holographic soft wall model. At low momentum transfer, we show that by matching the nucleon and rho Regge slopes and fixing the nucleon anomalous dimension by the nucleon mass, a perfect match to the world average charge radii from e-p scattering (including the recent small charge radius of the proton measured by the PRad collaboration at JLab) follows. At high momentum transfer, the nucleon anomalous dimension runs up to match the hard scaling rule.
We briefly review and expand our recent analysis for all three invariant A,B,D gravitational form factors of the nucleon in holographic QCD. They compare well to the gluonic gravitational form factors recently measured using lattice QCD simulations.
We investigate non-linear extensions of the holographic soft wall model proposed by Karch, Katz, Son and Stephanov [1] including non-minimal couplings in the five-dimensional action. The non-minimal couplings bring a new parameter $a_0$ which control
We present a comprehensive analysis of the spacelike nucleon electromagnetic form factors and their flavor decomposition within the framework of light-front holographic QCD. We show that the inclusion of the higher Fock components $ket {qqqqbar{q}}$
We present a study of electroexcitation of nucleon resonances with higher spins, in a soft-wall AdS/QCD model, comparing our results with existing data from the CLAS Collaboration at JLab, from MAMI, and other experiments.
We present results for the nucleon electromagnetic form factors, including the momentum transfer dependence and derived quantities (charge radii and magnetic moment). The analysis is performed using O(a) improved Wilson fermions in Nf=2 QCD measured