ﻻ يوجد ملخص باللغة العربية
Inspired by biological evolution, we explain the rationality of Vision Transformer by analogy with the proven practical Evolutionary Algorithm (EA) and derive that both of them have consistent mathematical representation. Analogous to the dynamic local population in EA, we improve the existing transformer structure and propose a more efficient EAT model, and design task-related heads to deal with different tasks more flexibly. Moreover, we introduce the spatial-filling curve into the current vision transformer to sequence image data into a uniform sequential format. Thus we can design a unified EAT framework to address multi-modal tasks, separating the network architecture from the data format adaptation. Our approach achieves state-of-the-art results on the ImageNet classification task compared with recent vision transformer works while having smaller parameters and greater throughput. We further conduct multi-model tasks to demonstrate the superiority of the unified EAT, e.g., Text-Based Image Retrieval, and our approach improves the rank-1 by +3.7 points over the baseline on the CSS dataset.
In Mandarin text-to-speech (TTS) system, the front-end text processing module significantly influences the intelligibility and naturalness of synthesized speech. Building a typical pipeline-based front-end which consists of multiple individual compon
We present the first complete far-infrared spectrum (43 to 197 um) of M82, the brightest infrared galaxy in the sky, taken with the Long Wavelength Spectrometer of the Infrared Space Observatory (ISO). We detected seven fine structure emission lines,
We introduce a fully stochastic gradient based approach to Bayesian optimal experimental design (BOED). Our approach utilizes variational lower bounds on the expected information gain (EIG) of an experiment that can be simultaneously optimized with r
In 1969, Strassen shocked the world by showing that two n x n matrices could be multiplied in time asymptotically less than $O(n^3)$. While the recursive construction in his algorithm is very clear, the key gain was made by showing that 2 x 2 matrix
Computational and cognitive studies of event understanding suggest that identifying, comprehending, and predicting events depend on having structured representations of a sequence of events and on conceptualizing (abstracting) its components into (so